Editor-in-Chief Hatice Kübra Elçioğlu Vice Editors Levent Kabasakal Esra Tatar Online ISSN 2630-6344 Publisher Marmara University Frequency Bimonthly (Six issues / year) Abbreviation J.Res.Pharm. Former Name Marmara Pharmaceutical Journal
Journal of Research in Pharmacy 2012 , Vol 16 , Num 3
The synthesis and antitubercular activity of substituted hydrazone,2-pyrazoline-5-one and 2-isoxazoline-5-one derivatives possessing 1,3,4-thiadiazole moiety
Başak Oral, Sevim Rollas
Marmara University School of Pharmacy Department of Pharmaceutical Chemistry, Istanbul, Turkey DOI : 10.12991/201216402

Summary

Sübstitüe 1,3,4-tiyadiazol halkası içeren hidrazon (2a-e), 2-pirazol-5-on (3a-e, 4a-e) ve 2-izoksazol-5-on (5a-e) türevi bileşikler sentezlenmiş ve antitüberküler aktiviteleri incelenmiştir. Sentezlenen bileşikler arasında en yüksek inhibisyon % 87 ile 3-metil-4-[4-(5-siklohegzilamino-1,3,4-tiyadiazol-2-il)fenilhidrazono]-2-izoksazolin-5-on (5b) ve % 86 ile etil 2-[4-(5-siklohegzilamino-1,3,4-tiyadiazol-2-il)fenilhidrazono]-3-oksobutirat (2b) bileşiklerinde görülmüştür. Yeni önder bileşiklerin geliştirilmesi için 2b ve 5b maddeleri iyi bir başlangıç olabilir.

Introduction

Tuberculosis continues to be one of the major health problems in the world. One-third of the world's population is infected with Mycobacterium tuberculosis[1,2]. Therefore, the identification of new compounds for the treatment of tuberculosis is an important under taking in medicinal chemistry research. 1,3,4-Thiadiazole derivatives have received much attention due o their versatile biological activities as antibacterial[3-5], antitubercular[6-10], antifungal[11], antiviral[12,13], anticancer[3,14-17], antiproliferative[18], antiinflammatory, analgesic and antipyretic[19]. Pyrazolinones have also shown various biological activities[20-22]. Linezolid (ZyvoxTM) is the first marketed oxazolidinone derivative for antibacterial[23] and antitubercular[24,25] infections. In the view of these above mentioned facts and attempt to achieve new compounds with better antitubercular properties.

In our previous papers, we have reported that isoxazolinones[11] possess antifungal activity and 1,3,4-thiadiazoles including compounds, isoxazolinones and hydrazones[7-9,26-28] possess antitubercular and cytotoxic activities. Pyrazolinones[6] which are isosters of isoxazolidinones have also shown antitubercular activity. We incorporated different five membered ring systems for investigation of their antitubercular activity as a part of our ongoing researches on antibacterial and antitubercular activity.

Results

Structure Determination
The synthesis of hydrazone derivatives 2a-e are been accomplished as outlined in Scheme 1 starting from 2-(4-aminophenyl)-5-alkyl/arylamino- 1,3,4-thiadiazoles (1a-e) that their multistep synthesis were reported previously by Karakuş et al[7,26]. By refluxing the intermediates ethyl 2-[4-(5-alkyl/arylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono]-3-oxobutirates 2a-e with hydrazine hydrate and phenyl hydrazine in glacial acetic acid, 1-(non-substituted/phenyl-3-methyl- 4-[4-(5-alkyl/arylamino-1,3,4-thiadiazole-2-yl) phenylhydrazo-no]-2-pyrazolin-5-ones 3a-e, 4a-e were gained. 3-Methyl-4-[4-(5-alkyl/arylamino- 1,3,4-thiadiazole-2-yl)phenylhydrazono]-5-isoxazolones 5a-e were obtained by the reaction of 2a-e with hydroxylamine HCl at he presence of sodium acetate in ethanolic medium.


Click Here to Zoom
SCHEME 1: The synthesis of 2-pyrazoline-5-one and 2-isoxazoline-5-one derivatives.

The structures of the synthesized compounds were determined by UV, IR, 1H-NMR and mass spectroscopy.

In the IR spectra, the absorptions carbonyl group for 2a-e were observed at 1712-1690 cm-1 (ester) and 1683-1658 cm-1 (ketone ) regions. The 1H-NMR spectra indicated the chemical shift of hydrazone NH protons between 11.52-11.63 and 13.90-14.12 ppm in the form of two singlet peaks by the reason of geometric isomerism. Strong deshielding of these protons can be explained by hydrogen bond formation[6].

The pyrazolinone carbonyl groups of compounds 3a-e, 4a-e and isoxazolone carbonyl groups of 5a-e were observed between 1660-1673 cm-1 and 1709-1717 cm-1 regions, respectively. The broad singlet signals that were attributed to the hydrazone N-H of 3a-e and 4a-e were observed at 13.30-13.84 ppm. The pyrazolinone N-H of 3a-e were determined between 11.46-11.64 ppm[6]. The protons of the methyl group attached to the 5-isoxazolone ring and hydrazone NH protons were observed as singlets at 2.13-2.27 ppm and 12.40-12.69 ppm respectively[28]. M+1 peaks were obtained in the mass spectra of all novel compounds.

Antituberculosis Activity
All novel compounds except for 4a, 4c and 4e were tested for in vitro anti-tuberculosis activity against M. tuberculosis H37Rv at 6.25 µg/mL concentration. Rifampicin was used as the standard in the antimycobacterial assays. 2-(4-Aminophenyl)- 5-alkyl/arylamino-1,3,4-thiadiazoles (1a-e) that their coupling products with acetylacetone were tested against M. tuberculosis H37Rv at 6.25 µg/mL previously by Karakuş et al[7] and it was declared that they demonstrated inhibition 16- 57% and 0-39% respectively whereas the coupling products (compounds 2a-e) of the same intermediate (1a-e) with ethyl acetoacetate exhibited 52-86% inhibition. Compound 2b which has a cyclohexyl moiety attached to the amino group of 1,3,4-thiadiazole ring was the most active compound with 86% inhibition against M. tuberculosis H37Rv. While compound 2c with a phenyl moiety attached to the amino group of 1,3,4-thiadiazole ring showed 52% inhibition against M. tuberculosis H37Rv, a higher inhibition percentage was evaluated with the compound carrying 4-chlorophenyl moiety in stead of phenyl moiety. 1-(Nonsubstituted/phenyl-3-methyl-4-[4-(5-alkyl/ arylamino-1,3,4-thiadiazole-2-yl)phenylhydrazono]-2-pyrazolin- 5-ones 3a-e, 4a-e except for 4a, 4c, 4e demonstrated 48- 68% inhibition against M. tuberculosis H37Rv at 6.25 µ,g/mL (Table 1). However, 3-methyl-1-phenyl-4-[4-(1-metil-1,2,4-triazolin- 2(3H)-thione-2-yl)phenylhydrazono]-2-pyrazoline-5- one[8] was expanded not to have inhibition against M. tuberculosis H37 Rv, compounds 3d, and 4d showed 52% and 68% inhibition respectively and the consequence is that 1,3,4-thiadiazole ring is the source of antitubercular activity. 3-Methyl- 4-[4-(5-alkyl/arylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono]- 5-isoxa-zolones 5a-e were completely active against M. tuberculosis H37Rv at 6.25 µg/mL with inhibition of 58-87% and compound 5b having cyclohexyl moiety could be elected easily from its' series with the highest inhibition value 87%.

TABLE 1: Antituberculer activity of 2-pyrazoline-5-one and 5-isoxazoline derivatives.

EXPERIMENTAL
General Procedures
All solvents and reagents were obtained from commercial sources and used without purification. All melting points were determined using Buchi 530 melting point apparatus. Elemental analysis were obtained using Leco CHNS-932 and consistent with the assigned structures. Ultraviolet spectra of all compounds were recorded on Schimadzu UV 2100 S at the concentration of 0.01 mg/ml and expressed in λmax (nm). Infrared spectra were recorded on Perkin Elmer 1600 and expressed in wavenumber (cm-1). NMR spectra were recorded on Bruker AVANCE-DPX 400 and Mercury-VX 400 BB at 600 MHz for 1H-NMR and the chemical shifts were expressed in δ (ppm) downfield from tetramethylsilane (TMS) using appropriate solvents. Mass spectra were obtained by using Fisons Instruments VG and Platform II LS-MS. The liquid chromatographic system consists of an Agilent technologies 1100 series instrument equipped with a quaternary solvent delivery system and a model Agilent 1100 series diode array detector. A Rheodyne syringe loading sample injector with a 50 μl sample loop was used for the injection of the analytes. Chromatographic data were collected and processed using Agilent Chemstataion Plus software. The seperation were performed at ambient temperature by using a reversed phase Waters Novapak C18 (3.9x150 mm, 5 μm particle size) column. All experiments were employed in isocratic mode. The mobil phase was prepared by mixing acetonitrile and bidistilled water (50: 50 v/v) and filtered through a 0.45 μm membrane and degassed by ultrasonication, prior to use. Solvent delivery was employed at a flow rate of 1 ml.min-1. Detection of the analytes were carried out at 254 nm.

Synthesis
Compounds (1a-e) were prepared according to the literature (7,29-31). Ethyl 2-[4-(5-alkyl/arylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono]-3-oxobutirates 2a-e were synthesized by the reactions of diazonium salts of compounds 1a-e with ethyl acetoacetate according to the literature methods[32]. The coupling products 2a-e were refluxed with hydrazine hydrate and phenyl hydrazine in glacial acetic acid for the synthesis of 1-(non-substituted/phenyl-3-methyl-4-[4-(5-alkyl/arylamino- 1,3,4-thiadiazole-2-yl)phenylhydrazo-no]-2-pyrazolin-5-ones 3a-e and 4a-e. 3-Methyl-4-[4-(5-alkyl/arylamino-1,3,4-thiadiazole- 2-yl)phenylhydrazono]-5-isoxazolones 5a-e were gained by the reaction of coupling products 2a-e with hydroxylamine HCl at he presence of sodium acetate in ethanolic medium.

Ethyl 2-[4-(5-ethylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono]-3-oxobutirate 2a
Yield: 62.34%; m.p.: 135-138°C; HPLC tR (min.): 3.42. Anal. Calc. for C16H19N5O3S: C, 53.17; H, 5.30; N, 19.38; S, 8.87. Found: C, 53.67; H, 5.34; N, 18.38; S, 8.47; UV (ethanol) λmax : 384, 264 nm; IR (KBr) [cm-1]: 3158 (NH); 1703 ( C=O ester), 1658 (C=O ketone), 1625, 1603, 1580, 1507 (C=C, C=N); 1H-NMR δ (ppm) (DMSO-d6): 1.06-1.29 (m, 6H, OCH2CH3 and NHCH2CH3), 2.42 (s, 3H, COCH3), 3.62-3.71 (m, 2H, NHCH2CH3), 4.33 (q, 2H, OCH2CH3), 7.51 (d, J=8.7 Hz, 2H, Ar H), 7.78 (d, J=8.7 Hz, 2H, Ar H), 7.89 (t, 1H, NH), 11.62 & 14.12 (2s, 1H, =C-N-NH); MS (CI): m/z 362 [M++1], 348, 316, 289, 288, 261, 247, 220, 219.

Ethyl 2-[4-(5-cyclohexylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono]-3-oxobutirate 2b
Yield: 68.74%; m.p.: 175-178°C; HPLC tR (min.): 8.79. Anal. Calc. for C20H25N5O3S: C, 57.81; H, 6.06; N, 16.85; S, 7.72. Found: C, 57.67; H, 5.95; N, 16.23; S, 7.53; UV (ethanol) λmax : 385, 264 nm; IR (KBr) [cm-1]: 3172 (NH), 1698( C=O ester), 1662 (C=O ketone), 1622, 1576, 1524, 1452 (C=C, C=N); 1H-NMR δ (ppm) (DMSO-d6): 1.14-1.42 (m, 10H, CH2 protons), 1.75 (t, 3H, OCH2CH3), 3.63 (s,1H, cyclohexyl CH), 4.03 (q, 2H, OCH2CH3), 7.51 (d, J=8.6 Hz, 2H, Ar H), 7.76 (d, J=8.6 Hz, 2H, Ar H), 7.85 (d, 1H, NH), 11.62 & 14.12 (2s, 1H, =C-N-NH); MS (CI): m/z 416 [M++1], 402, 370, 344, 301, 274, 273.

Ethyl 2-[4-(5-phenylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono]-3-oxobutirate 2c
Yield: 66.48%; m.p.: 209-211°C; HPLC tR (min.): 6.57. Anal. Calc. for C20H19N5O3S: C, 58.67; H, 4.68; N, 17.10; S, 7.83. Found: C, 57.88; H, 4.43; N, 16.65; S, 7.66; UV (ethanol) λmax : 388, 273 nm; IR (KBr) [cm-1]: 3197 & 3143 (NH), 1690 (C=O ester), 1664 (C=O ketone), 1619, 1603, 1570, 1501 (C=C, C=N); 1H-NMR δ (ppm) (DMSO-d6): 1.31 (t, 3H, OCH2CH3), 2.42 (s, 3H, COCH3), 4.34 (q, 2H, OCH2CH3), 7.03 (t, 1H, Ar H), 7.37 (t, 2H, Ar H), 7.56 (d, J=8.7 Hz, 2H, Ar H), 7.66 (d, 2H, Ar H), 7.89 (d, J=8.7 Hz, 2H, Ar H), 10.49 (s,1H, NH), 11.63 & 14.10 (2s, 1H, =C-N-NH); MS (CI): m/z 410 [M++1], 396, 366,364, 341, 336, 313, 295, 269, 268, 261, 260.

Ethyl 2-[4-(5-(4-chlorophenyl)amino-1,3,4-thiadiazole-2-yl) phenylhydrazono]-3-oxobutirate 2d
Yield: 61.05%; m.p.: 210-212°C; HPLC tR (min.): 3.54. Anal. Calc. for C20H18ClN5O3S: C, 54.11; H, 4.09; N, 15.78; S, 7.22. Found: C, 53.92; H, 3.98; N, 15.43; S, 7.15; UV (ethanol) λmax : 379, 277 nm; IR (KBr) [cm-1]: 3128 (NH), 1712 (C=O ester), 1683 (C=O ketone), 1620, 1566, 1523, 1494 (C=C, C=N ); 1H-NMR δ (ppm) (DMSO-d6): 1.21 (t, 3H, OCH2CH3), 2.37 (s, 3H, COCH3), 4.23 (q, 2H, OCH2CH3), 7.31 (d, J=8.8 Hz, 2H, ArH), 7.45 (d, J=8.7 Hz, 2H, Ar H), 7.60 (d, J=8.8 Hz, 2H, Ar H), 7.77 (d, J=8.7, 2H, Ar H), 10.50 (s,1H, NH), 11.52 & 13.90 (2s, 1H, =C-N-NH); MS (CI): m/z 444 [M++1], 400, 398, 371, 370, 329, 302, 301, 287, 157.

Ethyl 2-[4-(5-benzylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono]-3-oxobutirate 2e
Yield: 65.09%; m.p.: 130-135°C; HPLC tR (min.): 5.32. Anal. Calc. for C21H21N5O3S: C, 59.56; H, 5.00; N, 16.54; S, 7.57. Found: C, 59.62; H, 4.92; N, 15.93; S, 7.43; UV (ethanol) λmax : 383, 263 nm; IR (KBr) [cm-1]: 3200 (NH), 1711 (C=O ester), 1678 (C=O ketone), 1604, 1581, 1562, 1504 (C=C, C=N); 1H-NMR δ (ppm) (DMSO-d6): 1.29 (t, 3H, OCH2CH3), 2.51 (s, 3H, COCH3), 4.32 (q, 2H, OCH2CH3), 4.66 (s, 2H, CH2), 7.23-7.42 (m, 5H, ArH), 7.54-7.63 (m, 3H, ArH and CH2NH), 7.81 (d, J=8.8 Hz, 2H, ArH), 11.63 & 14.12 (2s, 1H, =C-N-NH); 1H-NMR δ (ppm) (DMSO-d6+D2O): 1.21 (t, 3H, OCH2CH3), 2.20 (s, 3H, COCH3), 4.40 (s, 4H, OCH2CH3 and CH2 protons), 7.20-7.33 (m, 5H, ArH), 7.46 (d, J=8.8 Hz, 2H, Ar H), 7.70 (d, J=8.8 Hz, 2H, Ar H); MS (CI): m/z 424 [M++1], 423, 350, 351, 309, 308, 283, 282.

3-Methyl-4-[4-(5-ethylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono]-2-pyrazolin-5-one 3a
Yield: 58.12%; m.p.: 260-264 °C; HPLC tR (min.): 2.31. Anal. Calc. for C14H15N7OS.1/2H2O: C, 49.68; H, 4.77; N, 28.97; S, 9.47. Found: C, 49.24; H, 4.63; N, 29.02; S, 9.13; UV (ethanol) λmax : 432, 308, 208 nm; IR (KBr) [cm-1]: 3243 (NH), 1664 (C=O pyrazolone), 1606, 1588, 1550, 1446 (C=C, C=N); 1H-NMR δ (ppm) (DMSO-d6): 1.11 (t, 3H, NHCH2CH3), 2.06 (s, 3H, CH3), 4.12 (q, 2H, NHCH2CH3), 7.51 (d, J=8.8 Hz, 2H, Ar H), 7.6 (d, J=8.8 Hz, 2H, Ar H), 7.79 (t, 1H, NH), 11.46 (s, 1H, pyrazolone NH), 13.30 (bs, 1H, =C-N-NH); MS (CI): m/z 330 [M++1], 303, 302, 222, 221, 220, 192, 178, 177, 136, 118, 103, 77.

3-Methyl-4-[4-(5-cyclohexylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono]-2-pyrazolin-5-one 3b
Yield: 82.06%; m.p.: 252-256 °C; HPLC tR (min.): 4.62. Anal. Calc. for C18H21N7OS: C, 56.38; H, 5.52; N, 25.57; S, 8.36. Found: C, 56.63; H, 5.06; N, 24.89; S, 8.03; UV (ethanol) λmax : 433, 309, 251, 210 nm; IR (KBr) [cm-1]: 3189 (NH), 1663 (C=O pyrazolone), 1608, 1586, 1547, 1452 (C=C, C=N of); 1H-NMR δ (ppm) (DMSO-d6): 1.15-1.35 (m, 6H, cyclohexyl CH2), 1.73 (d, J=8.3 Hz, 2H, cyclohexyl CH2), 2.00 (d, J=9.9 Hz, 2H, cyclohexyl CH2), 2.17 (s, 3H, CH3), 3.54 (m, 1H, cyclohexyl CH), 7.61 (d, J=8.8 Hz, 2H, Ar H), 7.79 (d, J=8.8 Hz, 2H, Ar H), 7.89 (t, 1H, NH), 11.59 (s, 1H, pyrazolone NH),13.30 (bs, 1H, =CN- NH); MS (CI): m/z 384 [M++1], 303, 302, 275, 274, 192, 178, 177, 136.

3-Methyl-4-[4-(5-phenylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono]-2-pyrazolin-5-one 3c
Yield: 66.21%; m.p.: 258-261°C; HPLC tR (min.): 3.45. Anal. Calc. for C18H15N7OS: C, 57.28; H, 4.01; N, 25.98; S, 8.50. Found: C, 57.12; H, 3.87; N, 25.21; S, 8.11; UV (ethanol) λmax : 431, 309, 209 nm; IR (KBr) [cm-1]: 3209 (NH), 1673 (C=O pyrazolone), 1649, 1587, 1551, 1446 (C=C, C=N); 1H-NMR δ (ppm) (DMSO-d6): 2.18 (s, 3H, CH3), 7.03 (t, 1H, Ar H),7.38 (t, 2H, Ar H), 7.67 (d, J=8.7 Hz, 4H, Ar H), 7.91 (d, J=8.7 Hz, 2H, Ar H), 10.55 (s, 1H, NH), 11.62 (s, 1H, pyrazolone NH), 13.31 (bs, 1H, =C-N=NH); MS (CI): m/z 378 [M++1], 303, 302, 269, 268, 261, 247, 192.

3-Methyl-4-[4-(5-(4-chlorophenyl)amino-1,3,4-thiadiazole-2-yl) phenylhydrazono]-2-pyrazolin-5-one 3d
Yield: 54.09%; m.p.: 243-246 °C; HPLC tR (min.): 10.19. Anal. Calc. for C18H14ClN7OS: C, 52.49; H, 3.43; N, 23.81; S, 7.79. Found: C, 52.04; H, 3.24; N, 24.09; S, 7.07; UV (ethanol) λmax : 431, 315, 254, 213 nm; IR (KBr) [cm-1]: 3143 (NH), 1673 (C=O pyrazolone), 1604, 1585, 1532, 1441 (C=C, C=N); 1H-NMR δ (ppm) (DMSO-d6): 2.17 (t, 3H, CH3), 7.23 (d, J=8.6 Hz, 2H, Ar H), 7.42 (d, J=8.5 Hz, 2H, Ar H), 7.68 (d, J=8.6 Hz, 2H, ArH), 7.89 (d, J=8.5 Hz, 2H, Ar H), 10.51 (s, 1H, NH), 11.64 (s, 1H, pyrazolone NH), 13.41 (bs, 1H, =C-N=NH); MS (CI): m/z 412 [M++1], 382, 304, 303, 302, 192.

3-Methyl-4-[4-(5-benzylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono]-2-pyrazolin-5-one 3e
Yield: 54.09%; m.p.: 230-233 °C; HPLC tR (min.): 2.85. Anal. Calc. for C19H17N7OS.1/2H2O: C, 56.98; H, 4.53; N, 24.48; S, 8.01. Found: C, 56.43; H, 4.46; N, 25.01; S, 8.21; UV (ethanol) λmax : 431, 311, 253, 210 nm; IR (KBr) [cm-1]: 3172 (NH), 1660 (C=O pyrazolone), 1604, 1585, 1532, 1453 (C=C, C=N); 1HNMR δ (ppm) (DMSO-d6): 2.17 (t, 3H, CH3), 4.55 (d, 2H, CH2), 7.29-7.41 (m, 5H, Ar H), 7.61 (d, J=8.7 Hz, 2H, Ar H), 7.79 (d, J=8.7 Hz, 2H, Ar H), 8.46 (s, 1H, NH), 11.59 (s, 1H, pyrazolone NH), 13.35 (s, 1H, =C-N=NH); MS (CI): m/z 392 [M++1], 349, 309, 301, 284, 283, 282, 258, 211, 192, 150, 136, 119, 92.

3-Methyl-1-phenyl-4-[4-(5-ethylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono]-2-pyrazolin-5-one 4a
Yield: 63.86%; m.p.: 214-218 °C; HPLC tR (min.): 16.49. Anal. Calc. for C20H19N7OS.H2O: C, 56.72; H, 5.00; N, 23.15; S, 7.57. Found: C, 56.47; H, 4.24; N, 22.86; S, 7.03; UV (ethanol) λmax : 422, 308, 245, 208 nm; IR (KBr) [cm-1]: 3181 (NH), 1666 (C=O pyrazolone), 1599, 1575, 1549, 1448 (C=C, C=N); 1H-NMR δ (ppm) (DMSO-d6): 1.22 (t, 3H, NHCH2CH3), 2.33 (s, 3H, CH3), 3.34-3.39 (m, 2H, NHCH2CH3), 7.24 (t, 1H, ArH), 7.48 (t, 2H, ArH), 7.71 (d, J=8.7 Hz, 2H, Ar H), 7.83 (d, J=8.7 Hz, 2H, Ar H), 7.93 (t, 3H, Ar H and NH), 3.84 (s, 1H, =C-N-NH); MS (CI): m/z 406 [M++1], 378, 220, 202, 192, 186, 174.

3-Methyl-1-phenyl-4-[4-(5-cyclohexylamino-1,3,4-thiadiazole- 2-yl)phenylhydrazono]-2-pyrazolin-5-one 4b
Yield: 81.73%; m.p.: 234-237 °C; HPLC tR (min.): 12.38. Anal. Calc. for C24H25N7OS.1/2H2O: C, 61.52; H, 5.59; N, 20.93; S, 6.84. Found: C, 61.14; H, 5.43; N, 20.14; S, 6.12; UV (ethanol) λmax : 424, 315, 247, 204 nm; IR (KBr) [cm-1]: 3181 (NH 1664 (C=O pyrazolone), 1583, 1546, 1505, 1450 (C=C, C=N); 1HNMR δ (ppm) (DMSO-d6): 1.24-1.35 (m, 6H, cyclohexyl CH2), 1.73 (t, J=8.2 Hz, 2H, cyclohexyl CH2), 2.01 (d, J=9.7 Hz, 2H, cyclohexzyl CH2), 2.33 (s, 3H, CH3), 3.55 (m, 1H, cyclohexyl CH), 7.25 (t, 1H, Ar H), 7.48 (t, 2H, Ar H), 7.72 (d, J=8.7 Hz, 2H, Ar H), 7.83 (d, J=8.7 Hz, 2H, Ar H), 7.94 (d, J=8.1 Hz, Ar H and NH), 13.74 (s, 1H, =C-N-NH); MS (CI): m/z 460 [M++1], 379, 378, 274, 202, 192, 186, 174.

3-Methyl-1-phenyl-4-[4-(5-phenylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono]-2-pyrazolin-5-one 4c
Yield: 72.68%; m.p.: 223-225 °C; HPLC tR (min.): 11.23. Anal. Calc. for C24H19N7OS: C, 63.56; H, 4.22; N, 21.62; S, 7.07. Found: C, 63.44; H, 4.03; N, 21.47; S, 6.77; UV (ethanol) λmax : 425, 324, 249, 203 nm; IR (KBr) [cm-1]: 3199 (NH), 1669 (C=O pyrazolone), 1621, 1600, 1583, 1543, 1453 (C=C, C=N); 1H-NMR δ (ppm) (DMSO-d6): 2.34 (s, 3H, CH3), 7.04 (t, 1H, Ar H), 7.25 (t, 1H, Ar H), 7.38 (t, 2H, Ar H), 7.48 (t, 2H, Ar H), 7.67 (d, J=8.7 Hz, 2H, Ar H), 7.77 (d, J=8.7 Hz, 2H, Ar H), 7.93-7.96 (m, 4H, Ar H), 10.57 (s,1H, NH), 13.58 (s, 1H, =C-N-NH); MS (CI): m/z 454 [M++1], 269, 268, 202, 192, 186, 174, 134, 133.

3-Methyl-1-phenyl-4-[4-(5-(4-chlorophenyl)amino-1,3,4- thiadiazole-2-yl)phenylhydrazono]-2-pyrazolin-5-one 4d
Yield: 57.16%; m.p.: 251-254 °C; HPLC tR (min.): 18.52. Anal. Calc. for C24H18ClN7OS: C, 59.07; H, 3.72; N, 20.09; S, 6.57. Found: C, 58.87; H, 3.64; N, 19.85; S, 6.63; UV (ethanol) λmax : 431, 315, 254, 213 nm; IR (KBr) [cm-1]: 3188 (NH), 1660 (C=O pyrazolone), 1620, 1598, 1551, 1434 (C=C, C=N); 1H-NMR δ (ppm) (DMSO-d6): 2.34 (s, 3H, CH3), 7.24 (t, 1H, Ar H), 7.40- 7.50 (m, 8H, Ar H), 7.59-7.61 (m, 2H, Ar H), 7.89-7.96 (m, 2H, Ar H), 10.66 (s, 1H, NH), 13.79 (s, 1H, =C-N-NH); MS (CI): m/z 488 [M++1], 461, 460, 305, 302, 288, 202, 192, 186, 174.

3-Methyl-1-phenyl-4-[4-(5-benzylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono]-2-pyrazolin-5-one 4e
Yield: 54.09%; m.p.: 230-233 °C; HPLC tR (min.): 10.42. Anal. Calc. for C25H21N7OS: C, 64.22; H, 4.53; N, 20.97; S, 6.86. Found: C, 63.98; H, 4.47; N, 19.61; S, 6.63; UV (ethanol) λmax : 424, 315, 249, 206 nm; IR (KBr) [cm-1]: 3174 (NH), 1664 (C=O pyrazolone), 1608, 1582, 1542, 1452 ( C=C, C=N); 1H-NMR δ (ppm) (DMSO-d6): 2.33 (s, 3H, CH3), 4.53 (d, 2H, CH2), 7.0-7.04 (m, 2H, Ar H), 7.28-7.32 (m, 8H, Ar H), 7.66-7.68 (m, 4H, Ar H), 8.43 (s,1H, NH), 13.54 (s, 1H, =C-N-NH); MS (CI): m/z 468 [M++1], 426, 377, 376, 308, 202, 192, 186, 174.

3-Methyl-4-[4-(5-ethylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono] -5-isoxazolone 5a
Yield: 63.32%; m.p.: 232-235 °C; HPLC tR (min.): 2.71. Anal. Calc. for C14H14N6O2S.1/2H2O: C, 49.55; H, 4.45; N, 24.76; S, 9.45. Found: C, 49.14; H, 4.34; N, 24.21; S, 9.16; UV (ethanol) λmax : 420, 308, 247 nm; IR (KBr) [cm-1]: 3197 (NH), 1716 (C=O isoxazolone), 1604, 1592, 1551, 1499 (C=C, C=N ); 1H-NMR δ (ppm) (DMSO-d6): 1.21 (t, 3H, NHCH2CH3), 2.27 (s, 3H, CH3), 3.35 (m, 2H, NHCH2CH3), 7.77 (d, J=8.8 Hz, 2H, Ar H), 7.84 (d, J=8.8 Hz, 2H, Ar H), 8.02 (s, 1H, NH), 12.68 (s, 1H, =C-N-NH); MS (CI): m/z 331 [M++1], 286, 248, 247, 246, 221, 218, 192, 119, 103.

3-Methyl-4-[4-(5-cyclohexylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono] -5-isoxazolone 5b
Yield: 88.32%; m.p.: 220-224 °C; HPLC tR (min.): 4.98. Anal. Calc. for C18H20N6O2S : C, 56.23; H, 5.24; N, 21.86; S, 8.34. Found: C,55.94; H, 5.04; N, 21.24; S, 7.96; UV (ethanol) λmax : 421, 310, 247 nm; IR (KBr) [cm-1]: 3186 (NH), 1709 (C=O isoxazolone), 1585, 1545, 1496, 1455 (C=C, C=N); 1H-NMR δ (ppm) (CDCl3): 1.15-1.35 (m, 6H, cyclohexzyl CH2), 1.73 (m, 2H, cyclohexzyl CH2), 2.00 (d, J=9.9 Hz, 2H, cyclohexzyl CH2), 2.13 (s, 3H, CH3), 3.31 (s, 1H, cyclohexzyl CH), 7.55 (d, J=8.8 Hz, 2H, Ar H), 7.84 (d, J=8.8 Hz, 2H, Ar H), 10.64 (s,1H, NH), 12.69 (s, 1H, =C-N-NH); MS (CI): m/z 385 [M++1], 340, 301, 275, 274, 150, 93, 65.

3-Methyl-4-[4-(5-ethylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono] -5-isoxazolone 5c
Yield: 58.32%; m.p.: 232-234 °C; HPLC tR (min.): 2.44. Anal. Calc. for C18H14N6O2S: C, 57.13; H, 3.73; N, 22.21; S, 8.47. Found: C,56.94; H, 3.66; N, 22.08; S, 8.24; UV (ethanol) λmax : 398, 255 nm; IR (KBr) [cm-1]: 3202 (NH), 1714 (C=O isoxazolone), 1617, 1601, 1550, 1451 (C=C , C=N); 1H-NMR δ (ppm) (DMSO-d6): 2.25 (s, 3H, CH3), 7.24-7.28 (m, 1H, Ar H), 7.32- 7.38 (m, 4H, Ar H), 7.72 (d, J=8.6 Hz, 2H, Ar H), 7.80 (d, J=8.6 Hz, 2H, Ar H), 8.44 (s,1H, NH), 12.56 (s, 1H, =C-N-NH); MS (CI): m/z 379 [M++1], 336, 334, 269, 268, 254, 247, 246, 119, 118, 103, 102, 101, 64.

3-Methyl-4-[4-(5-(4-chlorophenyl)amino-1,3,4-thiadiazole-2-yl) phenylhydrazono] -5-isoxazolone 5d
Yield: 51.59%; m.p.: 213-216 °C; HPLC tR (min.): 6.18. Anal. Calc. for C18H13ClN6O2S: C, 52.37; H, 3.17; N, 20.36; S, 7.77. Found: C, 52.11; H, 2.96; N, 20.14; S, 7.04; UV (ethanol) λmax : 407, 256 nm; IR (KBr) [cm-1]: 3194 (NH), 1713 (C=O isoxazolone), 1622, 1601, 1547, 1495 (C=C, C=N); 1H-NMR δ (ppm) (CDCl3): 2.18 (s, 3H, CH3), 7.38-7.55 (m, 8H, Ar H), 10.64 (s, 1H, NH), 12.58 (s, 1H, =C-N-NH); MS (CI): m/z 413 [M++1], 398, 355, 354, 331, 330, 329, 316, 305, 304, 302, 288, 184.9, 152, 150, 128, 126, 118.

3-Methyl-4-[4-(5-benzylamino-1,3,4-thiadiazole-2-yl) phenylhydrazono]-5-isoxazolone 5e
Yield: 68.13%; m.p.: 206-209 °C; HPLC tR (min.): 4.30. Anal. Calc. for C19H16N6O2S: C, 58.15; H, 4.11; N, 21.42; S, 8.17. Found: C, 57.83; H, 4.07; N, 21.13; S, 7.86; UV (ethanol) λmax : 414, 309, 246 nm; IR (KBr) [cm-1]: 3194 (NH), 1717 (C=O isoxazolone), 1589, 1544, 1490, 1453 (C=C, C=N); 1H-NMR δ (ppm) (CDCl3): 2.27 (s, 3H, CH3), 4.55 (d, 2H, CH2), 7.26-7.30 (m, 1H, Ar H), 7.34-7.41 (m, 4H, Ar H), 7.75 (d, J=8.7 Hz, 2H, Ar H), 7.82 (d, J=8.7 Hz, 2H, ArH), 8.50 (s,1H, NH), 12.40 (s, 1H, =CN- NH); MS (CI): m/z 393 [M++1], 348, 309, 283, 150, 118, 91, 77, 64.

Antituberculosis Activity
Primary screen was conducted at 6.25 μg mL−1 against M. tuberculosis H37Rv in BACTEC 12B medium using the BACTEC 460 radiometric system[33]. Compounds effecting <90% inhibition in the primary screen (MIC >6.25 μg mL−1) were not evaluated further. Compounds demonstrating at least 90% inhibition in the primary screen were re-tested at lower concentration (MIC) in a broth microdilution assay alamar Blue. The MIC was defined as the lowest concentration inhibiting 99% of the inoculum.

ACKNOWLEDGEMENT
This work is supported by the Research Fund of Marmara University, project number: SAG-DKR-270605-0139.

The authors are grateful to Dr. Joseph A. Maddry from the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF), National Institute of Allergy and Infections Diseases Southern Research Institute, GWL Hansen's Disease Centre, Colorado State University, Birmingham, AL, USA, for the in vitro evaluation antimycobacterial activity using M. tuberculosis H37Rv.

Reference

1) Maddry JA, Ananthan S, Goldman RC, Hobrath JV, Kwong CD, Maddox C, Rasmussen L, Reynolds RC, Secrist III JA, Sosa MI, White EL, Zhang W. Antituberculosis activity of the molecular libraries screening center network library. Tuberculosis 2009; 89: 354-63.

2) Janin YL. Antituberculosis drugs: Ten years of research. Bioorg Med Chem 2007; 15: 2479-513.

3) Chande MS, Verma RS, Barve PA, Khanwelkar RR, Vaidya RB, Ajaikumar KB. Facile synthesis of active antitubercular, cytotoxic and antibacterial agents: a Michael addition approach. Eur J Med Chem 2005; 40: 1143-8.

4) Quesnelle CA, Gill P, Roy S, Dodier M, Marinier A, Martel A, Snyder LB, S. D’Andrea SV, Bronson JJ, Frosco M, Beaulieu D, Warr GA, Denbleyker KL, Stickle TM, Yang H, Chaniewski SE, Ferraro CA, Taylor D, Russell JW, Santone KS, Clarke J, Drain RL, Knipe JO, Mosure K, Barrett JF. Biaryl isoxazolinone antibacterial agents. Bioorg Med Chem Lett 2005; 15: 2728-33.

5) Manojkumar P, Ravi TK, Gopalakrishnan S Antioxidant and antibacterial studies of arylazopyrazoles and arylhydrazonopyrazolones containing coumarin moiety. Eur J Med Chem 2009; 44: 4690-4.

6) Küçükgüzel ŞG, Rollas S, Erdeniz H, Kiraz M, Ekinci AC, Vidin A. Synthesis, characterization and pharmacological properties of some 4-arylhydrazono-2-pyrazoline- 5-one derivatives obtained from heterocyclic amines. Eur J Med Chem 2000; 35: 761-71.

7) Karakuş S. 2-(4-Aminofenil)-5-sübstitüeamino-1,3,4-tiyadiazollerden türeyen bazı bileşiklerin sentezi ve spektral verileri. Ph.D. Thesis, Marmara University Institute of Health Sciences 2001.

8) Küçükgüzel ŞG, Rollas S. Synthesis, characterization of novel coupling products and 4-arylhydrazono-2-pyrazoline- 5-ones as potential antimycobacterial agents. Farmaco 2002; 57 (7) : 583-7.

9) Oruç EE, Rollas S, Kandemirli F, Shvets N, Dimoglo AS. 1,3,4-thiadiazole derivatives, synthesis, structure elucidation and structure-antituberculosis activity relationship investigation. J Med Chem 2004; 47: 6760-7.

10) Foroumadi A, Kargar Z, Sakhtemen A, Sharifzadeh Z, Feyzmohammadi R, Kazemi M, Shafiee A. Synthesis and antimycobacterial activity of some alkyl [5-(nitroaryl)- 1,3,4-thiadiazol-2-ylthio]propionates. Bioorg Med Chem Lett 2006; 16:1164-7.

11) Kömürcü ŞG, Rollas S, Yılmaz N, Çevikbaş A. Synthesis of 3-methyl-4-[(2,4-dihydro-4-substituted-3H-1,2,4- triazole-3-thione-5-yl)phenylhydrazono]-5-isoxa-zolone and evaluation of their antimicrobial activities. Drug Metab Drug Inter 1995; 12(2): 161-8.

12) Deng BL, Hartman TL, Buckheit RW, Pannecouque C, Clercq E De, Cushman M. Replacement of the metabolically labile methyl esters in the alkenyldiarylmethane series of non-nucleoside reverse transcriptase inhibitors with isoxazole, oxazolone, or cyano substituents. J Med Chem 2006; 49: 5316-23.

13) Fan X, Zhang X, Zhou L, Keith KA, Kern ER, Torrence PF. A pyrimidine-pyrazolone nucleoside chimera with potent in vitro anti-orthopoxvirus activity. Bioorg Med Chem Lett 2006; 16: 3224-8.

14) Mavrova AT, Wesselinova D, Tsenov YA, Denkova P. Synthesis, cytotoxicity and effects of some 1,2,4-triazole and 1,3,4-thiadiazole derivatives on inmunocompetent cells. Eur J Med Chem 2009; 44: 63-9.

15) Wakabayashi K, Imai K, Miyachi H, Hashimoto Y, Tanatani A. 4-(Anilino)pyrrole-2-carboxamides: Novel non-steroidal/non-anilide type androgen antagonists effective upon human prostate tumor LNCaP cells with mutated nuclear androgen receptor. Bioorg Med Chem 2008; 16: 6799-812.

16) Laughlin SK, Clark MP, Djung JF, Golebiowski A, Brugel TA, Sabat M, Bookland RG, Laufersweiler MJ, VanRens JC, Townes JA, De B, Hsieh LC, Xu SC, Walter RL, Mekel MJ, Janusz MJ. The development of new isoxazolone based inhibitors of tumor necrosis factor-alpha (TNF-α) production. Bioorg Med Chem Lett 2005; 15: 2399-403.

17) Ishioka T, Kubo A, Koiso Y, Nagasawa K, Itai A, Hashimoto Y. Novel non-steroidal /non-anilide type androgen antagonist with an isoxazolone moiety. Bioorg Med Chem 2002; 10: 1555-66.

18) Conchon E, Aboab B, Goldsteyn RM, Cruzalegui F, Edmonds T, Léonce S, Pfeiffer B, Prudhomme M. Synthesis, in vitro antiproliferative activities and Chk1 inhibitory properties of indolylpyrazolones and indolylpyridazinedione. Eur J Med Chem 2006; 41: 1470-7.

19) El-Hawash SAM, Badawey SAM, El-Ashmawey IM. Nonsteroidal antiinflamatory agents part-2 antiinflamatory, analgesic and antipyretic activity of some sustituted 3-pyrazolin-5-ones and 1,2,4,5,6,7-3H-hexahydroindol- 3-ones. Eur J Med Chem 2006; 41: 155-65.

20) Girges MM, Hana MA, Rasal D, Berghot M. Potentially active hypoglycemic agents from N1-nicotinoyl-2-pyrazolin- 5-one derivatives and their N1-(oxynicotinoyl)analogues. Arzneim-Forsch./Drug Res 1992; 42: 1350-3.

21) Golebiowski A, Townes JA, Laufersweiler MJ, Brugel TA, Clark MP, Clark CM, Djung JF, Laughlin SK, Sabat MP, Bookland RG, VanRens JC, De B, Hsieh LC, Janusz MJ, Walter RL, Webster ME, Mekel MJ.: The development of monocyclic pyrazolone based cytokine synthesis inhibitors. Bioorg Med Chem Lett 2005; 15: 2285-9.

22) Chen T, Benmohammed R, Kim J, Smith K, Amante D, MorimotoRI, KirschDR, Ferrante RJ, Silverman RB. ADME-guided design and synthesis of aryloxanyl pyrazolone derivatives to block mutant superoxide dismutase 1 (SOD1) cytotoxicity and protein aggregation:potential application fort he treatment of amyotrophic lateral sclerosis. J Med Chem 2012; 55: 515-27.

23) Anderegg TR, Sader HS, Fritsche TR, Ross JE, Jones RN. Trends in linezolid susceptibility patterns: report from the 2002-2003 worldwide Zyvox Annual Appraisal of Potency and Spectrum (ZAAPS) Program. Int J Antimicr Agents 2005; 26: 13-21.

24) Von der Lippe B, Sandven P, Brubakk O. Efficacy and safety of linezolid in multidrug resistand tuberculosis. J Infect 2006; 52: 92-6.

25) Prammananan T, Chaiprasert A, Leechawengwongs M. In vitro activity of linezolid against multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant (XDR)-TB isolates. Int J Antimicrob Agents 2009; 33: 190-1.

26) Solak N, Rollas S. Synthesis and antituberculosis activity of 2-(aryl/alkylamino)-5-(4-aminophenyl)-1,3,4-thiadiazoles and their Shiff bases. ARKIVOC 2006; 12: 173-81.

27) Karakuş S, Çoruh U, Barlas-Durgun B, Vázquez-López EM, Özbaş-Turan S, Akbuğa J, Rollas S. Synthesis and cytotoxic activity of some 1,2,4-triazoline-3-thione and 2,5-disubstituted-1,3,4-thiadiazole derivatives. Marmara Pharm J 2010; 14(2): 84-90.

28) Rollas S, Kokyan Ş, Koçyiğit-Kaymakcıoğlu B, Özbaş- Turan S, Akbuga J. Synthesis and evaluation of cytotoxic activities of some substituted isoxazolone derivatives. Marmara Pharm J 2011; 15: 94-9.

29) Rollas S. Cleavage of azo compounds with hydrazine hydrate and some new 1,3,4-thiadiazole derivatives. J Pharm Univ Mar 1985; 1: 59-68.

30) Rollas S. Reduction of aromatic and heteroaromatic azo compounds with hydrazine hydrate. Marmara Pharm J 2010; 14: 41-6.

31) Özger Y, Rollas S. Reductive cleavage of azo compounds with hydrazine and some 1,3,4-thiadiazole derivatives III. J Pharm Univ Mar 1988; 5: 133-41.

32) Ergenç N, Rollas S The coupling products of aliphatic active C-H compounds with diazonium salts I. J Fac Pharm Istanbul 1975; 11: 8-23.

33) Collins L, Franzblau SG. Microplate alamar blue assay vesus BACTEC 460 system for high-throughput screening of compoundsagainst Myccbacterium tuberculosis and Myccbacterium avium. Antimicrob Agents Chemother 1997; 41: 1004-9.

Marmara University