Editor-in-Chief Hatice Kübra Elçioğlu Vice Editors Levent Kabasakal Esra Tatar Online ISSN 2630-6344 Publisher Marmara University Frequency Bimonthly (Six issues / year) Abbreviation J.Res.Pharm. Former Name Marmara Pharmaceutical Journal
Journal of Research in Pharmacy 2023 , Vol 27 , Issue 1
Euphorbia neriifolia L. phytochemical lead compounds discovered using pharmacoinformatic methods as possible SARS CoV-2 main protease inhibitors
Vedanshu MALVIYA1,Mukund TAWAR1,Prashant BURANGE2,Ritu BAIRAGI2,Vaibhav BHADANGE2,Chaitanya VIKHAR1
1Department of Pharmaceutics, Faculty of Pharmacy, Sant Gadge Baba Amravati University, Amravati, India
2Department of Pharmaceutical Chemistry, Faculty of Pharmacy Sant Gadge Baba Amravati University, Amravati, India
DOI : 10.29228/jrp.300 The corona virus (CoV) family's emerging SARS-CoV-2 strain potentially causes one of the most catastrophic COVID-19 pandemics in mankind. Other than vaccines for preventing SARS-CoV-2 infection, no selective drugs are available to treat the disease caused by the SARS-CoV-2. The main protease (Mpro) of SARS-CoV-2 plays a critical role in viral replication, and inhibiting the protease can hamper the virus's replication and infection process. Thus, we aimed to identify SARS-CoV-2 main protease (Mpro) inhibitors from Euphorbia neriifolia. Primarily, a total of 31 compounds were selected through wide literature study and the Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT) server. Current advances in computer-aided drug discovery includes molecular docking, pharmacokinetics, drug properties, toxicity analysis and molecular dynamic (MD) simulation were applied in characterization and identification of possible lead compounds in E. neriifolia. The compound’s screening through molecular docking resulted in four phytochemicals, viz., CID: 5316673, CID: 102316539, CID: 101257, and CID: 9547213 exhibiting higher binding affinity of -8.461, -7.355, -6.404, and -6.382 kcal/mol, respectively, to the active site of the target Mpro. Subsequently, these four phytochemicals exhibited good pharmacokinetics and drug properties without toxicity. A MD simulation confirmed the binding stability of four phytochemicals to the Mpro. Our study identified four phytochemicals (CID: 5316673, CID: 102316539, CID: 101257, and CID: 9547213) can be developed as treatment option for SARS-CoV-2 disease related complications. Further in vitro and in vivo screening of the anti-SARS-CoV-2 effectiveness of E. neriifolia, as well as future clinical studies, are encouraged. Keywords : SARS-CoV-2; phytochemicals; euphorbia neriifolia; molecular protease; molecular docking; pharmacokinetics; drug properties; toxicity; molecular dynamic simulation
Marmara University