Volatile constituents and antimicrobial activity of *Vinca major* L. subsp. *hirsuta* (Boiss) stearn grown in Turkey

Ishak ERIK¹*^(D), Gözde KILIC¹^(D), Büşra KORKMAZ¹^(D), Seda FANDAKLI²^(D), Şengül ALPAY KARAOGLU³^(D), Nurettin YAYLI¹^(D)

- ¹ Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey.
- ² Department of Nutrition and Dietetic, Faculty of Health Sciences, Avrasya University, Trabzon, Turkey.
- ³ Department of Biology, Faculty of Science and Arts, Recep Tayyip Erdoğan University, Rize, Turkey
- * Corresponding Author. E-mail: ishakerik@ktu.edu.tr (I.E.); Tel. +90 462 377 88 47.

Received: 12 February 2021/ Revised: 27 May 2021 / Accepted: 05 July 2021

ABSTRACT: In this study, volatile compounds (VCs) in the essential oil (EO), SPME and SPME of *n*-hexane extract of *Vinca major* subsp. *hirsuta* (Boiss.) Stearn were analyzed by GC-FID/MS instrument. A total of 32, 38, and 26 compounds with in the 98.5%, 98.6%, and 98.6% were identified, respectively. As a result of VCs study, (*Z*)-3-hexenol (36.8%) in the EO, 1,3,5-trimethylbenzene (31,5%) in the SPME, and phenylethyl alcohol (32.8%) in the SPME of *n*-hexane extract of *V. major* subsp. *hirsuta* were found to be major compounds. Sesquiterpenes (20.6%, and 11.5%) for the HD and SPME, monoterpenes (18.6%) for the SPME of *n*-hexane extract of *V. major* subsp. *hirsuta* were found as the main groups among the terpenic compounds, respectively. Then, the antimicrobial activity of the EO and the solvent extracts (*n*-hexane, acetonitrile, methanol, and water) of *V. major* subs. *hirsuta* against 3 gram negative, 3 gram positive, 1 tuberculosis and 2 fungus were screened. The EO showed the only activity against the *Mycobacterium smegnatis* ATCC607 (MIC, 152 µg/mL) and *Candida albicans* ATCC60193 (MIC, 38 µg/mL). The *n*-hexane extract did not show any activity against all tested microorganisms. The best antimicrobial activity for the acetonitrile, methanol, and water extracts were observed against *M. smegnatis* with 69 µg/mL, 609 µg/mL, and 437 µg/mL MIC values, respectively. None of the extracts were found to be active to *Enterococcus faecalis* ATCC29212, *Staphylococcus aureus* ATCC25923, and *Saccharomyces cerevisiae* RSKK 251.

KEYWORDS: Vinca major subsp. hirsuta; Volatile constituents; Antimicrobial activity; SPME; GC-FID/MS.

1. INTRODUCTION

The genus *Vinca* L. (Apocynaceae) contains perennial subshrubs or herbaceous species distributed from Europe to North-west Africa, and South-west Asia. In the flora of Turkey, four species of the genus *Vinca* grow wildly including *Vinca major* [1, 2]. *Vinca* species are grown as ornamental plants and leaves of the *Vinca major* are used as diuretic, against constipation, appetizing, and antipyretic in Turkey [3]. Antimicrobial [4], antioxidant [5], antidiabetic [6, 7], and anti-diarrheal properties [8] of *Vinca* species extracts were mentioned.

Volatile component analysis for the aerial parts and leaf of *Vinca rosea*, and *Vinca difformis* [4, 9-11] and *in vitro a*-glucosidase, glucoamylase, antimicrobial and anti-proliferative activities of *Vinca rosea*, *V. major, Vinca herbacea*, and *Vinca minor* has been reported, respectively [6, 12]. Phenolic composition and antioxidant activity for the methanol extracts obtained from the flower, leaf, and stem of *V. major* subsp. *hirsuta* had mentioned. Leaf of the plant had given the highest antioxidant activity. Five phenolic compounds were reported in all extracts of *V. major* subsp. *hirsuta* [13]. However, to the best of our knowledge of literature survey, no data about volatile composition in the EO, SPME and SPME of *n*-hexane extract and antimicrobial activities (EO and solvent extracts) of *V. major* subsp. *hirsuta* have been reported up to date. The purpose of this study was to evaluate the extent of the variations for the VCs and antimicrobial activities for the EO and solvent extracts (*n*-hexane, acetonitrile, methanol, and water) obtained from the aerial part of *V. major* subsp. *hirsuta*. This article presents first report on volatile chemical evaluations and antimicrobial activities for the *V. major* subsp. *hirsuta*.

How to cite this article: Erik I, Kılıc G, Korkmaz B, Fandaklı S, Alpay Karaoğlu S, Yaylı N. Volatile constituents and antimicrobial activities of *Vinca* major L. subsp. hirsuta (Boiss) stearn grown in Turkey. J Res Pharm. 2021; 25(5): 581-588.

2. RESULTS

2.1. Chemical composition of the EO, SPME and SPME of n-hexane extract

Volatile components in the EO, SPME and SPME of *n*-hexane extract of the *V. major* subsp. *hirsuta* were analyzed by GC-FID/MS using Rxi-5MS column. Identification of the VCs made by a typical library search and literature comparison [14-22]. The chemical profile of volatiles, the percentage content, and calculated retention indices of the constituents are summarized in table 1.

Compounds	DI*	DIa	HD^{b}	SPME ^c	SPME ^d
Compounds	KI	KI"		(%) ^e	
Hexanal	803	800	0.8	-	-
(Z)-3-Hexenol	858	861	36.8	1.0	1.5
4-Methyloctane	864	867	-	-	0.5
1-Hexanol	863	869	17.4	-	-
<i>p</i> -Xylene	878	877	-	0.9	-
o-Xylene	894	891	-	0.9	-
2-Heptanol	894	892	-	-	1.1
Cumene	929	929	-	0.1	-
a-Pinene	940	938	0.2	-	0.5
3-Ethyl-2-methylheptane	942	940	-	0.1	-
(E)-2-Heptenal	954	956	-	-	0.5
Propylbenzene	958	957	-	1.4	-
4-Methylnonane	961	959	-	0.1	-
1-Ethyl-3-methylbenzene	963	964	-	9.8	-
Benzaldehyde	960	965	-	-	4.0
1-Ethyl-2-methylbenzene	983	980	-	5.1	-
3-Octanone	979	981	0.1	-	-
<i>psi</i> -Cumene	985	983	-	3.5	-
Myrcene	988	989	-	-	1.1
1,3,5-Trimethylbenzene	996	996	-	31.5	-
(Z)-3-Hexenyl acetate	1004	1004	12.9	0.5	-
trans-2,4-Heptandienal	1012	1011	-	-	1.0
o-Cymene	1022	1025	-	7.4	0.2
Limonene	1031	1030	0.4	0.3	16.3
Indane	1041	1039	-	1.1	
Benzene acetaldehyde	1052	1056	0.1	-	7.2
1-Methyl-3-propylbenzene	1058	1052	-	2.0	-
1,4-Diethylbenzene	1056	1056	-	1.5	-
γ-Terpinene	1054	1057	-	-	0.5
1-Octanol	1063	1068	0.3	-	-
Acetophenone	1073	1069	-	-	0.5
4-Ethyl-1,2-dimethylbenzene	1078	1078	-	0.5	-
1-Ethyl-2,4-dimethyl-benzene	1083	1086	-	1.5	-
Nonan-2-ol	1097	1096	-	-	2.2
Linalool	1095	1097	1.6	-	-
Nonanal	1100	1101	0.3	-	-
Undecane	1100	1104	-	5.0	-
Phenylethyl alcohol	1117	1124	-	-	32.8
Pentylcyclohexane	1130	1132	-	0.1	
1,2,4,5-Tetramethylbenzene	1131	1131	-	1.5	-
6-Methylundecane	1155	1148	-	0.1	-
1,2,3,4-Tetramethylbenzene	1159	1154	-	1.0	-
2-Methylundecane	1164	1158	-	0.1	-
2-Hydroxy acetophenone	1167	1165	-	4.6	-
<i>p</i> -Methyl acetophenone	1180	1174	-	0.1	-
Methyl salicylate	1195	1197	2.7	4.4	-
Dodecane	1200	1204	-	0.5	-
β -Citronelolol	1228	1225	0.8	-	-
trans-Geraniol	1253	1252	1.0	0.3	-

Table 1. Volatile compounds of *V. major* subs. *hirsuta* species growing in Turkey.

	DI			HD ^b	SPME ^c	SPME ^d
Compounds	RI*		RIª —		(%) ^e	
Ethyl salicylate	1269		1262	0.1	-	-
Tridecane	1300		1303	-	0.1	9.5
Undecanal	1305		1304	-	-	0.5
β -Damascenenone	1380		1386	0.1	-	-
Tetradecane	1400		1402	-	-	12.8
Jasmone	1390		1391	0.4	-	-
<i>trans-</i> (β)-caryophyllene	1417		1416	15.8	8.2	-
β -Copaene	1430		1436	0.2	-	
5-Methyltetradecane	1454		1451	-	-	0.8
<i>trans-β</i> -Farnesene	1454		1453	0.1	0.1	-
4-Methyltetradecane	1457		1454	-	-	1.6
a-Humulene	1460		1461	2.2	1.2	-
<i>trans-β</i> -Ionene	1489		1487	-	-	0.9
Germacrene-D	1484		1487	2.1	1.8	
Hexadecane	1500		1502	_	_	0.7
a-(E,E) Farnesene	1505		1504	0.2	0.1	-
β-Bisabolene	1509		1508	_	0.1	-
(Z)-3-Hexenvl benzoate	1565		1562	0.1	-	-
Spathulenol	1577		1576	0.1	-	-
Carvophyllene oxide	1582		1582	0.3	-	-
<i>a</i> -Bisabolol	1685		1685	-	-	0.2
Hexahvdrofarnesvl acetone	1846		1848	0.1	-	-
Nonadecane	1900		1900	-	-	0.6
<i>n</i> -Hexadecanoic acid	1966		1970	0.2	-	-
Ethyl palmitate	1994		1995	-	0.1	-
Heneicosane	2100		2099	0.1	-	0.8
Phytol	2110		2109	0.8	-	-
Linoleic acid	2131		2128	0.1	-	-
Tricosane	2300		2298	0.1	-	0.3
Chemical classes	HDp			SPME ^c	SPME of <i>n</i> -hex. ^d	
	%e	NC	f %e	NCf	%e	NC ^f
Monoterpenes	0.6	2	77	2	18.6	5
Monoterpenoids	3.5	4	0.3	1	-	-
Sesquiterpenes	20.6	6	11.5	6	_	-
Sesquiterpenoids	0.1	1	-	-	0.2	1
Diterpene	0.1	1	_	_	-	-
Ternene related	0.0	2	_	_	0.9	1
Aldebyde	12	3	_	_	13.2	5
Alcohol	54.5	3	10	- 1	37.6	4
Aliphatic hydrocarbons	0.2	2	1.0 6.1	8	27.6	4 0
Aromatic hydrocarbons	0.2	~	61.2	14	27.0	9
Fetore	- 15 8	-	5	2	-	-
Latonos	05	+ ว	17	3 n	-	- 1
Acide	0.3	∠ ว	4./	2	0.5	T
Others	0.5	2	- 1 1	- 1	-	-
Total	- 08 5	-	1.1	20	-	- 26
IUtal	70.0	32	90.0	30	20.0	∠0

Table 1 (Continued). Volatile compounds of V. major subs. hirsuta species growing in Turkey.

*Litreture RI values; *Retention Index calculated from retention times relative to that of n-alkane series (C_6 - C_{30}); *HD: Hydrodistillation; *SPME: Solid phase microextraction; dSPME: Solid phase microextraction of *n*-hexane extract; e%: Percentages obtained by FID peak-area normalization; *NC: Number of compounds.

2.2. Antimicrobial activities for the EO and solvent extracts

The antimicrobial activities of the EO and solvent extracts of *V. major* subsp. *hirsuta* against seven bacteria (3 gram negative, 3 gram positive, and one no gram) and two fungi were evaluated. After the inhibition diameters were observed in mm, the MIC values (μ g/mL) were calculated [15, 23, 24] (Table 2).

3. DISCUSSION

A total of 32, 38, and 26 compounds from HD, SPME and SPME of *n*-hexane extract of *V*. major subsp. hirsuta were identified and represented to an average of 98.5%, 98.6%, and 98.6%, respectively. VCs study showed that (Z)-3-hexenol (36.8%), hexanol (17.4%), (Z)-3-hexenol acetate (12.9%) and *trans*-(β)-caryophyllene (15.8%) were found to be major compounds in the EO of V. major subsp. hirsuta. SPME GC-FID/MS analysis of V. major subsp. hirsuta gave the 1-ethyl-3-methylbenzene (9.8%), 1,3,5-trimethylbenzene (31,5%), o-cymene (8.2%) and *trans*-(β)-carvophyllene (7.4%) as main constituent. In addition, limonene (16.3%), phenylethyl alcohol (32.8 %), tridecane (9.5%), and tetradecane (12.8%) were found as the main compounds in the SPME GC-FID/MS analysis of *n*-hexane extract obtained from *V. major* subsp. *hirsuta*. The main volatile components of the V. major subsp. hirsuta varies depending on the extraction technique used. In general, (Z)-3-hexenyl acetate (12.9%, and 0.5%), methyl salicylate (2.7%, and 4.4%), trans-Geraniol (1.0%, and 0.3%), trans-(β)caryophyllene (15.8%, and 8.2%), *cis*- β -farnesene (0.1%, and 0.1%), *a*-humulene (2.2%, and 1.2%), germacrene-D (2.1%, and 1.8%), and *a*-farnesene (0.2%, and 0.1%) were found both in the EO and SPME of *V. major* subsp. hirsuta, respectively. (Z)-3-Hexenol (36.8%, 1.0%, and 1.5%), and limonene (0.4%, 0.3%, and 16.3%) were present in all three EO, SPME and SPME of *n*-hexane extract of the *V. major* subsp. *hirsuta*, respectively. Only compounds (Z)-3-hexenol (36.8%, 1.0%, and 1.5%), and limonene (0.4%, 0.3%, and 16.3%) were found in all three separate samples, respectively. The results showed that no regular increase or decrease for the type or amounts of components depends on the used techniques. The data from the present study demonstrated that sesquiterpene components (20.6%, 11.5%) in the EO and SPME, monoterpene (18.6%) in the SPME of *n*-hexane extract of the V. major subsp. hirsuta were the predominant compounds among the all terpenes as seen in table 1. Indeed, alcohols (54.5%, 37.6%) in the EO and SPME of *n*-hexane extract, and aromatic hydrocarbons (61.3%) in the SPME of V. major subsp. hirsuta were the major class compounds, respectively (Table 1).

	Stock Sol. (µg/ml)	Microorganisms, inhibition zone (mm) and minimal inhibition concentration (MIC, ug/mL)									
Extracts			Gram negative		Gram positive			No Gr.	Fungi		
			Ec	Yр	Pa	Ef	Sa	Вс	Ms	Са	Sc
EO	12800	mm	-	-	-	-	-	-	12	10	-
		MIC	-	-	-	-	-	-	152	38	-
<i>n</i> -Hexane	24300	mm	-	-	-	-	-	-	-	-	-
		MIC	-	-	-	-	-	-	-	-	-
Acetonitrile	5500	mm	6	6	6	-	-	-	15	10	-
		MIC	275	275	275	-	-	-	69	137	-
Methanol	97500	mm	-	-	-	-	-	7	9	-	-
		MIC	-	-	-	-	-	243 7	609	-	-
Water 69600	(0(00	mm	-	-	-	-	-	-	10	-	-
	69600	MIC	-	-	-	-	-	-	437	-	-
Amp.	10	mm	10	10	18	10	35	15	-	-	-
		MIC	10	18	128	35	10	15	-	-	-
Strep.	10	mm							35		
		MIC							4		
Flu	5	mm								25	25
		MIC								8	8

Table 2. Screening for the antimicrobial activity of the EO and the solvent extracts of V. major subsp. hirsuta.

Ec: Escherichia coli, Yp: Yersinia pseudotuberculosis, Pa: Pseudomonas aeruginosa, Sa: Staphylococcus aureus, Ef: Enterococcus faecalis, *Bc:* Bacillus cereus 702 Roma, Ms: Mycobacterium smegmatis, Ca: Candida albicans, Sc: Saccharomyces cerevisiae, Amp.: Ampicillin, Strep.: Streptomycin, Flu.: Fluconazole, (-): no activity

In the literature, GC-MS analysis for the chloroform extract of *V. rosea* has given campesterol, stigmasterol and β -sitosterol and also its moderate glucoamylase activity (51.87%) reported [4]. Volatile oil analysis obtained from the leaf of *V. rosea* has yielded citronellyl acetate, aliphatic compounds, cadinene, and 2-heptanol [9]. Volatile components for the aerial parts of *V. difformis* extracts were also studied [11]. An essential oil analysis for the leaf of *V. rosea* had given and aldehydes, sesquiterpenes, faty acids, and lochnerol type compounds characterized [10]. The major volatile components of *Vinca herbacea* and *Vinca soneri*

were found tetrapentacontane (77.84%), 6-octadecanoic acid (28.85%), respectively. We also identified some similar aliphatic compounds and 2-heptanol [9] in this work. Also, it has been reported that the major phenolic components of the leaves of *V. herbacea* and *V. soneri* are routine trihydrate (1280,25 mg/100g), chlorogenic acid (401.23 mg/100g), respectively [25].

The observed chemovariation of *V. major* subsp. *hirsuta* are in good agreement with the published data obtained from other specie [14, 15, 18-22, 26, 27] due to the used extraction methods and locality. It is well known that there are many factors (altitude, temperature, land, growing conditions, and season), which can affect the qualitative and quantitative differences in the VCs produced in plant.

Considering the antifungal activity results, the best MIC values for the EO was found as $38 \mu g/mL$ against *C. albicans*. Acetonitrile extract was only active to gram negative bacteria *E. faecalis, Y. pseudotuberculosis,* and *P. aeruginosa* in all tested extracts. The most active extract was found to be acetonitrile and second best activity was observed with $69 \mu g/mL$ MIC value against *M. smegmatis*. The EO and water extracts were only active to *M. smegmatis*. It has been observed that the best anti-tuberculosis activity was observed for acetonitrile extract against to *M. smegmatis* among the all tested microorganism.

In the literature, *in vitro* α -glucosidase inhibitor activity performed as a preliminary screening for petroleum ether, chloroform, ethyl acetate, methanol, and aqueous extracts of *V. rosea*. In comparison with all the extracts, methanol extract had shown promising activity with IC₅₀ values of 77.41 µg/mL for *V. rosea* [6]. Antimicrobial and anti-proliferative activities of *V. major*, *V. herbacea*, and *V. minor* grown in Iran had screened. Endophytic fungi bioactivity of methanol and ethyl acetate extracts (7.8-250 µg/mL) were assessed against a panel of pathogenic fungi and bacteria. Data had shown that both methanol and ethyl acetate extracts from all endophytic isolates had significant cytotoxic effects against the model target fungus *Pyricularia oryzae* [12]. The differences for the biological activity for the plants could be related to the many factors (species, concentration, etc.) that could affect the activity as we observed.

4. CONCLUSION

VCs composition of the V. major subsp. hirsuta has been analyzed and antimicrobial activities for the EO and solvent extracts were investigated for the first time. (Z)-3-Hexenol (36.8%), 1,3,5-trimethylbenzene (31.5%), and phenylethyl alcohol (32.8%) were found to be major compounds of all three methods (EO, SPME, SPME of *n*-hexane extract), respectively. However, linalool, β -citronelolol, β -damascenenone, α -copaene, spathulenol, caryophyllene oxide, and phytol as terpenic compounds were found only in the EO of V. major subsp. *hirsuta*. These clearly showed that various extraction methods that were used in this work gave the identification of different components as in the literature. Sesquiterpenes were found to be major class of component (20.6%) among the terpenes in the EO oil of V. major subsp. hirsuta. The amount of (Z)-3-hexenol (36.8%), 1-hexanol (17.4), and trans-(β)-caryophyllene (15.8%) were so high that EO of V. major subsp. hirsuta could be the source for the production of these compounds. In general, the greatest activity was observed for the EO of V. major subsp. hirsuta against M. smegmatis with 38 µg/mL MIC value. Acetonitrile extract was only active to gram negative bacteria (E. faecalis, Y. pseudotuberculosis, and P. aeruginosa) and water extract was only active to M. smegmatis (437 μ g/mL, MIC) among the all test microorganism. Therefore, the overall results of observed antimicrobial activities suggest that EO and solvent extracts of V. major subsp. hirsuta may have promising prospect for pharmaceutical and other industrial applications. In further study, activity guided isolation and purification could be carried out on V. major subsp. hirsuta.

5. MATERIALS AND METHODS

5.1. Plant material

V. major subsp. *hirsuta* was collected on June 10th, 2018 in the flowering stage from Kanuni campus of Karadeniz Technical University, Trabzon-Turkey [2]. Voucher specimens deposited in the Herbarium of the Department of Biology, Karadeniz Technical University (KTUB-1284).

5.2. Hydrodistillation (HD) procedure for obtaining the essential oil

EO of *V. major* subsp. *hirsuta* obtained from the fresh aerial parts of plant (~100 g) by hydrodistillation in a modified Clevenger-type apparatus with cooling bath (-10 °C) system (3 h) [yields: 0.055% (w/w)]. The obtained oils dissolved in HPLC grade *n*-hexane (1 mL), dried over anhydrous sodium sulphate, and stored at 4-6 °C in a sealed brown vial [14, 15].

5.3. Solvent extractions (*n*-hexane, acetonitrile, methanol, and water)

The fresh plant of *V. major* subsp. *hirsuta* (10.0 g) were disintegrated and extracted (x3 times) with HPLC grade *n*-hexane (15 mL), acetonitrile (15 mL), methanol, and water (15 mL) at room temperature. The crude *n*-hexane, acetonitrile, and methanol extracts were filtered through a 0.45 µm filter and concentrated under reduced pressure using a rotary evaporator to give crude *n*-hexane (0.1402 g), acetonitrile (0.2140 g), and methanol (0.2942 g) extracts. The water extract was lyophilized to give crude extract (0.1530 g) [14, 15].

5.4. Solid phase micro extraction (SPME) analysis

The fresh plant samples (1.2 g) and *n*-hexane extract (87 mg) were placed in vials sealed with a siliconerubber septum cap. A poly dimethylsiloxane/divinyl benzene fiber (Supelco, USA) was used for the absorption of the volatile components. Before the analysis, the fibers were conditioned for 5 min at 250°C in the GC injector. SPME were done at 50°C with incubation time of 5 min, and extraction time of 10 min.

5.5. Gas chromatography-Mass spectrometry (GC-FID/ MS)

EO analysis was carried out using, a Shimadzu QP2010 ultra GC-FID/MS, Shimadzu 2010 plus FID, fitted with a PAL AOC-5000 plus auto sampler and Shimadzu Class-5000 Chromatography Workstation software. The separation was analyzed by means of a Restek Rxi-5MS capillary column (30 mm x 0.25 mm × 0.25 μ m) (USA). EO injections to GC-FID/MS was performed in split mode (1:30) at 230 °C. The EO solution (1 μ L) in *n*-hexane (HPLC grade) were injected and analyzed with the column held initially at 60°C for 2 min and then increased to 240°C with a 3°C/min heating ramp and the final temperature of 250°C was held for 4 minutes. Helium (99.999 %) was used as carrier gas with a constant flow-rate of 1 mL/min. Detection was implemented in electronic impact mode (EI); ionization voltage was fixed at 70 eV, scan mode (40-450 *m/z*) was used for mass acquisition [14, 15].

5.6. Identification of volatile constituents

Retention indices of the volatile components of *V. major* subsp. *hirsuta* was determined by Kovats method using *n*-alkanes (C_6 - C_{30}) as standards. Volatile compounds were identified by comparisons with literature RI [14-19] and MS compared to existing analytical standards and by matching mass spectral libraries (NIST, Wiley7NL, FFNSC1.2, and W9N11).

5.7. Microorganisms used for antimicrobial activity

The test microorganisms used in the study were obtained from Refik Saydam Hıfzısıhha Institute (Ankara) and are as follows: *Escherichia coli* ATCC35218, *Yersinia pseudotuberculosis* ATCC911, *Pseudomonas aeruginosa* ATCC43288, *Staphylococcus aureus* ATCC25923, *Enterococcus faecalis* ATCC29212, *Bacillus cereus* 709 Roma, *Mycobacterium smegmatis* ATCC607, *Candida albicans* ATCC60193, and *Saccharomyces cerevisiae* RSKK 251.The EO and solvent extracts were weighed and the stock solutions were prepared in *n*-hexane, acetonitrile, methanol, and water, respectively. Inhibition diameters were measured by the agar well diffusion method [23, 24] and the MIC value was determined as microgram-milliliter (μ g/mL) to the microdilution technics (Table 2).

5.8. Antimicrobial activity assessment (Agar-well diffusion method)

The antimicrobial screening test using agar-well diffusion method as adapted was used earlier [15, 23, 24]. Each microorganism was suspended in Mueller-Hinton broth (Difco, Detroit, MI) and diluted approximately 10⁶ colony forming unit (cfu) per ml. They were "flood-inoculated" onto the surface of Mueller Hinton agar, Brain Heart Infusion agar and Potato Dextrose Agar (PDA) (Difco, Detriot, MI) and then dried. Brain Heart Infusion agar was used for *M. smegmatis* and *S. mutans*. For *C. albicans* PDA was used. Five-millimeter diameter wells were cut from the agar using a sterile cork-borer, and 50 µL of the compound substances were delivered into the wells. The plates were incubated for 24-48 h at 36°C. Antimicrobial activity was evaluated by measuring the zone of inhibition against the test organism. Compound stock solutions were prepared at different concentrations (5.500-97.500 µg/mL) according to the amount of material obtained. The 1/10 dilution of each solvent was used as a control.

5.9. Minimal inhibition concentration (MIC) assay

The antimicrobial properties of the EO and solvent extracts of *V. major* subsp. *hirsuta* were investigated quantitatively in respective broth media by using microdilution method and the minimal inhibition

concentration (MIC) values (μ g/mL) were examined [24]. The antibacterial activity assays were carried out in Mueller-Hinton broth (MHB) at pH. 7.0±0.2 and 18-24 h at 36 °C incubated. For antifungal activity test were used Yeast Extract Peptone Dextrose (YEPD) broth (pH 6.5±0.2) and 48 h at 36 °C incubated. Brain Heart Infusion broth (BHI) (Difco, Detriot, MI) was used for *M. smegmatis* and incubated for 72 h at 36 °C. The MIC value was defined as the lowest concentration that showed no growth. Ampicillin (10 mg/mL), streptomycin (10 mg/mL) and fluconazole (5 mg/mL) were used as standard antibacterial and antifungal drugs, respectively. The 1/10 dilution of each solvent was used as a control.

Acknowledgements: The authors are thankful to Professor Kamil Coşkunçelebi (Karadeniz Technical University, Faculty of Science, and Department of Biology) for the authentication of the species. We also thank to Karadeniz Technical University for the financial support.

Author contributions: Concept – I.E., N.Y.; Design – I.E., B.K., G.K.; Supervision – N.Y.; Resources – N.Y., S.A.K; Materials – I.E., G.K., S.F.; Data Collection and/or Processing – S.F., G.K.; Analysis and/or Interpretation – I.E., B.K., S.F., N.Y.; Literature Search – I.E., N.Y., B.K.; Writing – N.Y., I.E; Critical Reviews – I.E., N.Y., S.A.K., B.K., G.K., S.F.

Conflict of interest statement: No potential conflict of interest was reported by the author(s).

REFERENCES

- [1] Wagstaff S. A phylogenetic interpretation of pollen morphology in tribe Mentheae (Labiatae). Advances in Labiatae Science Royal Botanic Gardens, Kew. 1992, pp.113-124.
- [2] Chamberline DF. In: Davis PH. (Eds.). Flora of Turkey and East Aegean Islands. Edinburgh University Press, Edinburgh, 1978, pp.161-163.
- [3] Baytop T. Treatment Plant in Turkey (Past and Present). Istanbul University Press, Turkey, Istanbul, 1984.
- [4] Meshram GA, Khamkar SS, Metangale GS, Kulkarni TS. Characterization of campesterol, stigmasterol and βsitosterol from *Vinca rosealeaves* by GC-MS and biological evaluation world. J Pharm Res. 2014; 3(4).
- [5] Logan BA, Demmig-Adams B, Adams WW, Grace SC. Antioxidants and xanthophyll cycle-dependent energy dissipation in *Cucurbita pepo* L. and *Vinca major* L. acclimated to four growth PPFDs in the field. J Exp Bot. 1998; 49(328): 1869-1879. [CrossRef]
- [6] Yadao N, Priya CL, Rao KVB. Carbohydrate hydrolyzing enzyme inhibitor property, antioxidant, and phytochemical analysis of *Cassia auriculata*, *Delonix regia* and *Vinca rosea* Linn: an *in vitro* study. J Appl Pharm Sci. 2015; 5(05): 18-27. [CrossRef]
- [7] Evans WC. Trease and Evans Pharmacognosy. Nottingham University Press, Nottingham, 2002, pp. 21.
- [8] Rajput MS, Nair V, Chauhan A, Jawanjal H, Dange V. Evaluation of antidiarrheal activity of aerial parts of *Vinca major* in experimental animals. Middle East J Sci Res. 2011; 7(5): 784-788.
- [9] Oliveros-Belardo L, Coronel V, Nicolas EC, Villarica AS. Some constituents of the volatile oil of the leaves of *Lochnera rosea* [*Vinca rosea*]. Perf and Essent Oil Rec. 1965; 56(4): 214-216.
- [10] Aldaba L, Oliveros-Belardo L. Preliminary chemical study of the leaves of the Philippine variety of *Lochnera (Vinca) rosea* Reichb. Rev Filip Med. 1938; 29: 259-293.
- [11] George M, Joseph L, Singh B, Sabu NS. Genotoxicity study of *Vinca difformis* using rat bone marrow. Int J Pharm Phytopharm Res. 2016; 5(1): 108-113.
- [12] Leylaie S, Zafari D. Antiproliferative and antimicrobial activities of secondary metabolites and phylogenetic study of endophytic *Trichoderma* species from *Vinca* plants. Front Microbiol. 2018; 9: 1484. [CrossRef]
- [13]Saral Ö, Şahin H, Karaköse M. Determination of antioxidant activity and phenolic compounds in *Vinca major* subsp. *hirsuta* by RP-HPLC-UV. ACU J For Fac. 2015; 16(2): 124-131.
- [14] Yayli N, Fandakli S, Korkmaz B, Barut B, Renda G, Erik I. Biological evaluation (antimicrobial, antioxidant, and enzyme inhibitions), total phenolic content and volatile chemical compositions of *Caucasalia macrophylla* (M. Bieb.) B. Nord.(Asteraceae). J Essent Oil-Bear Plants. 2018; 21(5): 1359-1373. [CrossRef]
- [15] Erik İ, Kılıç G, Öztürk E, Karaoğlu ŞA, Yaylı N. Chemical composition, antimicrobial, and lipase enzyme activity of essential oil and solvent extracts from *Serapias orientalis* subsp. *orientalis*. Turk J Chem. 2020; 44(6): 1655-1662. [CrossRef]

- [16] Adams RP. Identification of Essential Oil Components by Gas Chromatography/mass Spectrometry. Allured Publishing Corporation Carol Stream, IL; 2007.
- [17] Yayli N, Yaşar A, Güleç C, Usta A, Kolaylı S, Coşkunçelebi K, Karaoğlu ŞA. Composition and antimicrobial activity of essential oils from *Centaurea sessilis* and *Centaurea armena*. Phytochemistry. 2005; 66(14): 1741-1745. [CrossRef]
- [18] Usta A, Yayli B, Kahrinman N, Karaoglu Ş, Yayli N. Composition and antimicrobial activity of essential oil from the flower of *Rhododendron luteum* Sweet. Asian J Chem. 2012; 24(5): 1927-1930. [CrossRef]
- [19] Kahriman N, Tosun G, İskender NY, Karaoğlu ŞA, Yayli N. Antimicrobial activity and a comparative essential oil analysis of *Centaurea pulcherrima* Willd. var. *pulcherrima* extracted by hydrodistillation and microwave distillation. Nat Prod Res. 2012; 26(8): 703-712. [CrossRef]
- [20] Çelik G, Kılıç G, Kanbolat Ş, Şener SÖ, Karaköse M, Yaylı N, Karaoğlu ŞA. Biological activity, and volatile and phenolic compounds from five Lamiaceae species. Flavour Fragr J. 2021; 36: 223-232. [CrossRef]
- [21] Renda G, Özel A, Barut B, Korkmaz B, Yayli N. The volatile chemical compositions of the essential Oil/SPME and enzyme inhibitory and radical scavenging activities of solvent extracts and the essential oils from *Coronilla orientalis* Miller and *C. varia* L. grows in Turkey. Iran J Pharm Sci. 2019; 18(4): 1831–1842. [CrossRef]
- [22] Colak NU, Yıldırım S, Bozdeveci A, Yaylı N, Çoşkunçelebi K, Fandaklı S, Yaşar A. Essential oil composition, antimicrobial and antioxidant activities of *Salvia staminea*. Rec Nat Prod. 2018; 12: 86-94. [CrossRef]
- [23] Barry AL. Standards NCCLS. Methods for determining bactericidal activity of antimicrobial agents: approved guideline. National Committee for Clinical Laboratory Standards Wayne, PA, 1999.
- [24] Woods GL, Brown-Elliott BA, Desmond EP, Hall GS, Heifets LB, Pfyffer GE. Ridderhof JC, Wallace RJJ, Warren NG, Witebsky FG. Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes; approved standard, NCCLS, 2010.
- [25] Şimşek Sezer EN, Uysal T. Volatile and phenolic compositions of the leaves of two *Vinca* L. species from Turkey. Curr Pers MAPs. 2018; 1(2): 103-110.
- [26] Ashrafi B, Ramak P, Ezatpour B, Talei RG. Biological activity and chemical composition of the essential oil of *Nepeta cataria* L. J Res Pharm. 2019; 23(2): 336-343. [CrossRef]
- [27] İşcan G, Demirci B, Köse YB. Antimicrobial essential oil of *Origanum boissieri* Ietswaart. J Res Pharm. 2020; 24(2): 233-239. [CrossRef]

This is an open access article which is publicly available on our journal's website under Institutional Repository at http://dspace.marmara.edu.tr.