
 

 

Journal of  
Research in Pharmacy 

 Research Article 
 www.jrespharm.com 

 

 
How to cite this article: Ghosh I, Singh K, Jayaprakash V, Jayapalan S. Machine Learning based QSAR model for therapeutically active candidate 
drugs with Thiazolidinedione (TZD) scaffold. J Res Pharm. 2024; 28(4): 1135-1151. 

© 2024 Marmara University Press 
ISSN: 2630-6344 

http://dx.doi.org/10.29228/jrp.795  

1135 

  
Machine learning based QSAR model for therapeutically 
active candidate drugs with thiazolidinedione (TZD) 
scaffold  
 
Irina GHOSH 1 , Komal SINGH 1 , Venkatesan JAYAPRAKASH 1 , Sudeepan JAYAPALAN 2*  

 
1  Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, 835215, Ranchi, India. 
2  Department of Chemical Engineering, Birla Institute of Technology, Mesra, 835215, Ranchi, India. 
 
* Corresponding Author. E-mail: sudeepan@bitmesra.ac.in (S.J.); Tel. +91-9572635441. 

Received: 07 August 2023 / Revised: 30 November 2023 / Accepted: 1 December 2023 

ABSTRACT: Diabetes is a multifactorial metabolic disorder occurs due to uncontrolled persistent hyperglycaemia. The 
α-glucosidase enzyme plays an important role in management of diabetes. The α-glucosidase enzyme gets secreted by 
the brush border cells of small intestine which helps in converting maltose into glucose and thereby inhibiting the 
enzyme will help in lowering blood glucose level. In the present study, 100 compounds were selected having activity 
against α-glucosidase enzyme and they were used to build a machine learning based quantitative structure activity 
relationship model (QSAR). All the compounds were having thiazolidinedione (TZD) as the common nucleus. The 
molecules selected were divided into training and testing datasets of 80:20 ratio for various model development. The 
important molecular descriptors which will affect the target were chosen using recursive feature elimination (RFE) 
algorithm. The predictive models were created using machine learning regression techniques including Support Vector 
Regression (SVR), Random Forest Regression (RFR), Decision Tree Regression (DTR) and Gradient Boosting Regression 
(GBR). A comparison-based analysis was done between the various machine learning algorithms. The GBR and RFR 
gave the best R2 value of 0.9992 and 0.9514 for the training dataset and 0.9414 and 0.8760 for the testing dataset 
respectively, followed by SVR and DTR. Thus, it concludes that the four-machine learning algorithm generates a highly 
predictive model for the unique compounds and a superior prediction capability for building a QSAR model for α-
glucosidase enzyme inhibitors.  

KEYWORDS: Machine Learning; α-glucosidase; TZD; Bioactivity; QSAR. 

 1.  INTRODUCTION 

Diabetes is one of the most common non-communicable diseases happening globally. Almost 80% of 
people suffering from diabetes live in developing countries like Indian subcontinent and China [1]. Diabetes 
happens when the body cannot efficiently use insulin, produce enough insulin, or both. Some of the 
processes involved in the onset of diabetes include the autoimmune destruction of the pancreatic β cells and 
the aberrant metabolism of protein, fat, and carbohydrates [2]. The number of people with diabetes 
worldwide has more than doubled during the last two decades. Diabetes mellitus is of different types, type 
1, type 2 and gestational diabetes [3]. Type 2 diabetes (T2DM) affects more than 90% of diabetic people. 

The emergence of type 2 diabetes in younger age groups, such as children, teenagers, and young 
people, is a worrying trend within the rapid growth. Enhancing the activity of two digestive system-located 
enzymes, intestinal α-glucosidase, and pancreatic α-amylase, is one method of managing diabetes [2]. The α-
glucosidase enzyme plays a vital role in breaking down complex carbohydrates into simple sugars that can 
be absorbed and utilized for energy, which is essential for normal physiological functions. However, 
excessive activity of the enzyme can lead to decreased glucose absorption, causing significant problems for 
patients with type 2 diabetes [4]. To address the issue, α-glucosidase inhibitors have been developed and 
used to regulate glucose levels in type 2 diabetes mellitus. Several types of α-glucosidase inhibitors, 
including acarbose, miglitol, and voglibose, have been clinically applied for medicinal purposes to inhibit 
the activity of α-glucosidase [3]. However, each of these medicines is linked to certain major side effects, 
including increased food consumption, cardiovascular disease mortality, gastrointestinal pain, and weight 
gain, among others [5]. Currently, indigenous flora or their bioactive substances are employed to treat 
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hyperglycaemia via a variety of different mechanisms of action. These herbal treatments are frequently 
regarded as having no negative effects [6]. The protein PPARɣ, which is recognized for controlling the 
transcription of the insulin responsive gene, which is involved in the regulation of glucose production, 
transport, and subsequently utilisation, is modulated by thiazolidinediones [7]. There are currently several 
novel insulin sensitizers being researched. 

The thiazolidinediones (TZD), also referred to as "glitazones," help type 2 diabetic patients better 
control their metabolic processes. Their impact on reducing blood sugar is mediated by an increase in insulin 
sensitivity. These substances are well-known for their capacity to lessen insulin resistance in adipose tissue, 
including muscle and the liver [8]. PPARɣ is a nuclear receptor that is activated by TZDs. The transcription 
of several genes involved in lipid and glucose metabolism is changed by the TZD-induced activation of 
PPARɣ [7]. This contains the genes that produce the adipocyte fatty acid binding protein, glucokinase, fatty 
acid transporter protein, fatty acyl-CoA synthase, lipoprotein lipase, and the GLUT4 glucose transporter [9]. 
Machine learning is a discipline of Artificial intelligence which focuses on the utilization of data and 
algorithms.  During the history of rational drug development, a variety of machine intelligence techniques 
have been used to cut costs and reduce the time-consuming nature of traditional studies. Quantitative 
structure-activity relationship (QSAR) modelling is one of many machine-learning technologies that have 
been created over the past few decades that can swiftly and affordably discover possible biologically active 
molecules from thousands of candidate compounds [10]. To deal with the enormous volumes of data 
produced by contemporary drug development methods, deep learning approaches—which are more potent 
and effective—evolved into machine learning approaches when drug research entered the era of "big" data 
[11]. A common computational strategy called virtual screening (VS) is frequently used to direct rational 
drug discovery [12]. In the past, different QSAR models for VS have been produced using machine-learning 
techniques, which constitute one of the most crucial elements of artificial intelligence. All rational drug 
discovery techniques use the same QSAR modelling process. With the advancements in modelling 
techniques and the creation of descriptors, QSAR is frequently used throughout the preclinical study process 
[13]. All QSAR models created so far are built on the original QSAR premise that "similar substances have 
comparable actions." Nevertheless, even though various descriptor types and machine-learning techniques 
used for QSAR modelling each have their own advantages and disadvantages, the resulting models still 
experience the same problems, such as overfitting and active cliffs, which makes it impossible to predict new 
compounds, particularly those with chemical structures that differ from those in the training sets used to 
create QSAR models [14]. Wang et al., [15] studied the QSAR models on PPARy binding affinity using 
various machine learning algorithms. They found that the network like similarity graphs are positively 
correlated with the cross-validation of the models and also they found that the developed regression models 
could be used for the evaluation of PPARy based QSAR models. Further, Saxena et al., [16] studied the 
insulin resistance metagenes of type 2 diabetes using variousmachine learning methodology such as support 
vecotr machine, XGBoost, Random Forest and so on. They found that the developed model gave the result of 
73% accuracy across 64 human adipose tissue samples. Similarly, various researchers developed different 
machine learning based QSAR models for different targets [17-22]. As a result, fresh initiatives are being 
made to include new modelling tools into QSAR to make it more suitable for drug discovery. 

In this study a Machine Learning based QSAR model was developed for compounds having 
thiazolidinedione scaffold targeting inhibition of α-glucosidase enzyme using four different machine 
learning algorithms namely Support Vector Regression (SVR) [23], Gradient boosting Regression (GBR) [24], 
Random Forest Regression (RFR) [25] and Decision tree Regression (DTR) [26]. The model’s efficiency was 
evaluated by using coefficient of determination (R2), Mean Absolute Error (MAE) and Root Mean Square 
Error (RMSE). 

2. RESULTS AND DISCUSSION  

A ML-based predictive model of anti-diabetic compounds acting on inhibition of α-glucosidase 
enzyme having TZD scaffold were studied. The predictive models were built using various machine 
learning algorithm.  

The machine learning predictive model for α-glucosidase inhibitors having TZD scaffold was 
developed by utilizing the top 50 features by recursive feature selection. Accordingly, four machine learning 
based regression algorithms were used such as Support Vector Regression (SVR), Decision Tree Regression 
(DTR), Gradient boosting Regression (GBR), and Random Forest Regression (RFR).  

The model’s performance was evaluated by using various statistical evaluation metrics like coefficient 
of determination (R2), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). Hyperparameters 
were used in the building of the model which helped in controlling the behaviour of the model during 
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training and testing prediction. The hyperparameters used in the RFR is ‘max_depth’ , ‘max_features’ and 
‘n_estimators’, for SVR it is ‘c’, ‘gamma’, and ‘kernel’, for GBR it is ‘max_depth’, ‘min_samples_leaf’ and 
‘n_estimators’, for DTR it is ‘max_depth’, ‘min_samples_leaf’ and ‘min_samples_split’. The likelihood of 
estimating actual data from the regression line is provided by R2 and its value lies between 0 and 1. The 
effectiveness of estimate increases as the R2 value tends approaching 1. The magnitude of the mistake in the 
value predictions is measured by MAE and RMSE estimates. The better the MAE and RMSE numbers, the 
more accurate is the prediction model. 

2.1. Model Accuracy Analysis for α-Glucosidase Inhibitors  

The performance of the model was evaluated based on the metrics R2, RMSE and MAE contingent to 
SVR, RFR, DTR and GBR algorithmic model. The R2, RMSE and MAE values proves that the model is 
performing accurately and precisely. Out of all the models, the training dataset in the GBR model is the most 
suitable one with having R2 value 0.9992, MAE value 0.0078, and RMSE value 0.0159, thus a suitable choice 
as a α-glucosidase inhibitor; followed by RFR, SVR and DTR model. In the case of test dataset also, GBR 
model gave better performance with R2 value 0.9410, MAE value 0.2692, and RMSE value 0.4236; followed 
by RFR, SVR and DTR. The values are given in Table 1. 

Table 1. Performance Evaluation Metrics of different models after fine-tuned hyperparameters for the training and 
testing set. 

 SVR RFR DTR GBR 
Evaluation 
Metrics 

Train Test Train Test Train Test Train Test 

R2 0.9445 0.8576 0.9514 0.8760 0.5697 0.4670 0.9992 0.9410 
MAE 0.3196 0.3530 0.1443 0.3976 0.2488 0.3738 0.0078 0.2692 
RMSE 0.5502 0.4536 0.2181 0.5509 0.4022 0.5785 0.0159 0.4236 

2.1.1. Support Vector Regression (SVR) analysis  

In Figure 1 (a) and Figure 2 (a), the scatter plot was studied for the detailed examination of the SVR 
model’s accuracy and performance in both training and testing dataset. The accuracy of the model is defined 
by trajectory of data near the slope line at 450. In Figure 1 (a). the training data were marginally diverted 
from the slope line. This behaviour of the values was also casted in the R2 precision indices. While in the 
Figure 2 (a), the test data is predominantly more diverted from the slope line.  

An additional graphical examination was done enlisting the Observed and Predicted values for 
different Experimental runs of SVR model, after fine-tuned hyperparameters for the training and test dataset 
for the prediction of pIC50 of α-glucosidase enzyme inhibitor molecules is shown in Figure 3 (a) and Figure 
4 (a).  In Figure 3 (a), the observed and predicted values for the training dataset is almost concurrent. And for 
the test dataset in Figure 4 (a), the observed and predicted values are slightly diverged from each other; their 
performance parameter is also inscribed in Table 1. 

A residual plot was sketched for SVR models after fine-tuned hyperparameters for the training and 
test dataset for the prediction of pIC50 of α-glucosidase enzyme inhibitor molecules is shown in Figure. 5 (a). 
In the Figure 5 (a) graph the test and training values are close to the zero line and a symmetry is followed 
between the values is found; thus, it shows that the SVR model is a good fit for the data points. 

2.1.2. Random Forest Regression (RFR) analysis  

In Figure 1 (b) and Figure 2 (b), a Scatter plot analysis for RFR model was done after fine-tuned with 
hyperparameters for the training and testing dataset for the prediction of pIC50 of α-glucosidase enzyme 
inhibitor molecule respectively. For the training dataset (Figure 1 (b)), the values are much more aligned to 
the slope line in comparison to the testing dataset. In the testing dataset (Figure 2 (b)), the data are clustered 
near the slope line, thus no proper correlation between the data point was found.    

In Figure 3 (b) and Figure 4 (b), the observed and Predicted values for different Experimental runs of 
RFR model after fine-tuned hyperparameters for the training and test dataset for the prediction of pIC50 of 
α-glucosidase enzyme inhibitor molecules. In Figure 3 (b), for the training dataset the observed and 
predicted values are harmonized with R2 value 0.9514. While for the test dataset in Figure 4(b), the values are 
slightly scattered along the observed and predicted line with R2 value 0.8760.   

In Figure 5 (b), a residual plot analysis for RFR model was done. The values are equitably distributed 
across the zero line, which indicates that the RFR model is a perfect fit for both the training and test dataset. 
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2.1.3. Decision Tree Regression (DTR) analysis  

A scatter plot analysis of DTR model was done in Figure 1 (c) and Figure 2 (c) for the training and test 
dataset. The data points in training and test dataset are not following a synchronous trend along the 450 
slope line. Thus, providing an inferior fit compared to other models.   

In Figure 3 (c) and Figure 4 (c), the observed and predicted values for different experimental runs of 
DTR model after fine-tuned hyperparameters for the training and test dataset for the prediction of pIC50 of 
α-glucosidase inhibitor molecules are shown. In Figure 3 (c), for the training dataset the predicted and 
observed line is marginally correlated while for the test set in Figure 4 (c), the predicted and observed line is 
irregularly correlated. Their respective R2 values are 0.5697 and 0.4670. Thus exhibits an inferior model 
accuracy. 

In Figure 5 (c), a residual plot analysis was done, the predicted values are equally distributed across 
the zero line and a symmetry was maintained. Thus, indicating a good coherence in the model. 

2.1.4. Gradient Boosting Regressor (GBR) analysis  

Figure 1 (d) and Figure 2 (d) shows scatter plot of GBR model after fine-tuned hyperparameters for 
the training and testing dataset for the prediction of pIC50 of α-Glucosidase enzyme inhibitor molecules. In 
Figure 1 (d), the values are packed along the slope line and thus the GBR model gives the best fit with all the 
actual variables. In Figure 2 (d), it has been observed that in the test dataset, the values are proportionally 
distributed across the zero line. 

In Figure 3 (d), the observed and predicted plot for training dataset, where the observed values are 
totally synchronous with the predicted value having R2 value 0.9992. Whereas in Figure 4 (d), the observed 
and predicted values are marginally diverse with R2 value of 0.9410. 

Figure 5 (d) inscribes the residual plot for GBR model. The values are almost near to zero line thus 
indicating a better fit compared to other models. 

2.1.5. Validation of Best Generated Models  

The four different ML models of SVR, RFR, DTR and GBR were developed using Python codes. The 
dataset were splited into 80:20 ratio and the different models were trained as well as tested. GBR model 
shows the better performance compared with other different four models. Somes of the already reported 
compounds were validated using developed GBR model [28, 29]. The performance of the validated results 
for the selected compounds are shown in Table 2. It is seen from the Table 2, the randomly selected two 
compounds shows an error of 1.08% and 4.23%.   

Table 2. Performance Evaluation of validated results of best performed GBR model. 

Smiles pIC50 Standardized 
pIC50 

Predicted 
Standardized 
pIC50 

Error 
(%) 

CCCCCCSc2nc1ccccc1n2CC(=O)NN3C(=O)CSC3c4cccc(OC)c4O 4.6179 0.3604 0.3565 1.08 
O=c2[nH]c(=Nc1ccc(N(=O)=O)cc1)sc2=Cc4cn(c3ccccc3)nc4c5ccccc5 4.0347 0.3822 0.3984 4.23 

 
 
 

  
(a) (b) 
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(c) (d) 

Figure 1. Scatter plot for the training dataset for the prediction of pIC50 of α-Glucosidase enzyme 
inhibitor molecules (a) SVR (b) RFR (c) DTR and (d) GBR 

 

  
(a) (b) 

  
(c) (d) 

Figure 2. Scatter plot after for the test dataset for the prediction of pIC50 of α-Glucosidase enzyme 
inhibitor molecules (a) SVR (b) RFR (c) DTR and (d) GBR 
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(a) (b) 

  
(c) (d) 

Figure 3. Observed and Predicted values for different Experimental runs for the training dataset for the 
prediction of pIC50 of α-Glucosidase enzyme inhibitor molecules (a) SVR (b) RFR (c) DTR and (d) GBR 

 

  
(a) (b) 

  
(c) (d) 

Figure 4. Observed and Predicted values for different Experimental runs for the testing dataset for the 
prediction of pIC50 of α-Glucosidase enzyme inhibitor molecules (a) SVR (b) RFR (c) DTR and (d) GBR 

  
(a) (b) 
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(c) (d) 

Figure 5. Residual plots for the prediction of pIC50 of α-Glucosidase enzyme inhibitor molecules (a) SVR (b) 
RFR (c) DTR and (d) GBR 

 

3. CONCLUSION 

Classical machine learning approaches has developed into a variety of alternative strategies, including 
OECD-QSAR, Pep-QSAR, hybrid QSAR and it is still a popular tool for studying areas like drug design or 
drug related ventures. Nowadays many drugs are getting discovered with the help of computational 
methods, which eventually lead to cut down in costs and speed up the process of discovery. It also reduces 
the lots of physical work which used to be needed before. In this project a ML-based QSAR model was 
developed for thiazolidinedione scaffold. The model was built using four different types of machine 
algorithm likely SVR, RFR, DTR and GBR. The dataset was built by collecting compounds from various 
scientific articles, consecutively the descriptors were generated by using PaDEL software, and then the 
important features were selected by Recursive feature Elimination tool. The four models were built and then 
in between them a correlative assessment was performed with the help of statistical measure likely R2, MAE 
and RMSE. The R2 value obtained by GBR and RFR is 0.9410 and 0.8760 for test dataset, while for training set 
it is 0.9992 and 0.9514 respectively, thus proving to be the most suitable algorithm for model building. 
Followed by SVR and DTR with R2 value 0.8576 and 0.4670 for test dataset, while for training set it is 0.9445 
and 0.9514 respectively. From the validation of randomly selected two compounds shows the error of 1.08% 
and 4.23% from the developed and best performed GBR model among other developed models. Thus, we 
can clearly draw the result, that is GBR and RFR can be used for building a QSAR model for anti-diabetic 
agents acting on inhibiting α-glucosidase enzyme. 

4. MATERIALS AND METHODS 

4.1. Data collection  

• The QSAR model was developed using google Colab notebook [27]. 
• In this study, 100 molecules having thiazolidinediones (TZD) as the central nucleus acting on 

a same target which is α-glucosidase enzyme are collected from various scientific articles for 
the above target [2, 3, 6, 28-33].  

• The molecules used for building the dataset should have their disease set common, must be 
acting on similar target enzyme/receptor, identical scaffold, the activity details, and similar 
assay procedure.   

• In the dataset the Scaffold is- Thiazolidinedione, Target is - α-glucosidase enzyme, Activity 
taken- IC50 and Assay procedure used is - α-glucosidase inhibition assay. 

• Inhibitors having IC50 values were extracted from the data. 
• SMILES were generated for the collected compounds using Molinspiration [34]. 
• Using various machine learning approaches, the entries were used to construct predictive 

models for each target. 
• The equation pIC50 = -log10(IC50), where IC50 was in molar concentration (µM), the equation 

was used to convert the half-maximal inhibitory concentration (IC50) of these unique entries 
to pIC50.The dataset used for model development is provided in Supplementary Table S1 for 
α-glucosidase enzyme inhibition.  
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4.2. SMILES generation  

The SMILES were generated for encoding the molecular structure of the compounds. The activity data 
for the compounds which is IC50 converted into pIC50. The Molinspiration software was used for the 
SMILES generation [34]. Then, they were given a unique id for every compound on the dataset.  

Molinspiration is a Java based cheminformatics software. It has many tools and packages in it which 
helps in generation of various molecular properties needed in QSAR modelling. Molinspiration have mib 
engine which helps in molecular processing, SMILES depiction etc. In Molinspiration, the molecular 
structure of the compound which acts as the input are drawn initially. Then, the SMILES (output) give us 
connectivity of the atoms present in the compound. The vice-versa can also be done using Molinspiration 
software. The dataset along with their SMILES is given in Supplementary Table S1. 

4.3. Molecular Descriptors generation  

Molecular descriptors are representation of quantitative properties of a molecule. They are used to 
characterize the chemical structure of the compounds and predict their various chemical and biological 
processes. Molecular descriptors can be calculated using various computational tools. These tools will 
analyse the molecular structure, including its size, shape, electronic properties, and chemical composition 
and then will generate the descriptors. There are various types of chemical descriptors like 1D, 2D, and 3D 
[35]. 

In this study, 2D descriptors are considered. 2D descriptors are mathematical representation of 2-
dimensional molecular structure of a compound. The various types of 2D descriptors are topological, 
geometrical, and electronic. The topological descriptors give information about connectivity in between the 
atoms in the molecule, geometrical descriptors represent molecular size and shape. Electronic descriptors 
give information about electronic properties likewise charges etc. The examples of 2D descriptors are 
number of atoms, the number of bonds, the molecular weight, the number of rings, the number of hydrogen 
bond donors and acceptors and the LogP.  2D descriptors are used in drug design, building QSAR model 
and virtual screening [36]. 

For building QSAR based prediction model for α-glucosidase enzyme (target), an open source PaDEL-
descriptor software [37] was used to generate the molecular descriptors. The chemical descriptors are 
calculated for every molecule present in the dataset [38].  The information regarding molecule structure, 
such as molecular weight, the number of bonds, the solvent accessible area, etc., is depicted by these 
molecular descriptors including fingerprints. According to their dimensionality, the descriptors are divided 
into 1D, 2D, and 3D features and are essential for comprehending the quantitative structure-activity 
relationship of molecules. All the descriptors generated are reported in Supplementary Table S2. 

4.4. Feature selection  

The process of picking relevant characteristics or variables from a wider set of features that are present 
in a dataset is known as feature selection. The feature selection process is done to improve the performance 
of ML-model by minimising the number of pointless or redundant features utilised during training of the 
model [39].  It helps in reducing overfitting, mitigating the curse of dimensionality. Feature selection helps in 
improving the model’s interpretability and helps in selection of the most important features from a dataset. 
Feature selection helps in cutting down the computational cost. 

Recursive feature elimination (RFE) is one of the feature selection techniques used in machine learning 
to rank the features, aims in selecting the most significant feature in a dataset by repeatedly removing the 
least significant features from a dataset until the desired number of features is obtained.  

The primary objective of RFE feature selection technique is to reduce the complexity of the model 
which in turn enhance the model performance. Also, RFE method prevents overfitting by removing 
unnecessary noise generated from less significant features for the model. Briefly, using RFE feature selection 
technique enhances the model performance and interpretability through the elimination of one feature or 
small set of features at a time [40].  

The RFE method starts with the:  
• Initial training of a regression model using all considered features in the dataset.  
• After the initial training of the model, the significance of each feature is ranked and assessed 

using coefficients or feature_importance_ attribute for regression models.  
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• RFE recursively eliminates a least significant features per iteration based on removing any 
existing dependencies and collinearities in the model. The iteration process will be continued 
until specified number of features are reached.  

• Cross-validation will split the dataset into number of subsets. One set of data is used for 
testing and the remaining data is used for training the model. Again, each time a different set 
of data will be used for testing and the remaining for training the model. The iteration process 
is repeated until the specified task is reached. In this way, cross-validation will help RFE to 
repeat the iteration process with different set of data’s each time to evaluate the algorithm 
efficiently.  

• The features which are most significant are extracted from the dataset to predict the target 
variable efficiently.  

• In general, RFE uses two parameters such as number of features to be selected and the choice 
of model can also be specified by the user.  

• Finally, the model will be re-evaluated using the most significant features in the dataset, 
resulting in an enhancement of model efficiency [40].  

Steps followed in the present work for implementing Recursive feature elimination-  
• Firstly, the necessary packages are imported from sklearn.feature_selection import RFE in the 

algorithm. 
• Then load the input and output variables of various features for the study. 
• Initiate RFE process by training a regression model with all considered features in the dataset 

and mention the number of features to be selected and the number of steps for cross-
validation. This work utilised top 50 features and 5 steps are selected for the study. 

• After the initial training, the features are ranked and the feature importances are assessed 
using feature_importance_ attribute for tree based regression model. 

• The pertinent top 50 features were chosen from the 10,851 features to serve as input variables 
for model training purpose using RFE. To prevent overfitting and the constraint of 
dimensionality, feature selection is essential. The selected top 50 features of each α-
glucosidase inhibitor for each technique have been given Supplementary Table S3. The top 50 
ranked features were used for further study. 

4.5. Machine learning methods  

The model was build using predictive algorithm for α-glucosidase enzyme target using four different 
machine learning methodology viz., Support Vector Regression (SVR), Random Forest Regression (RFR), 
Decision Tree Regression (DTR) and Gradient Boosting Regression (GBR). 

4.5.1. Support Vector Regression (SVR) 

A supervised machine learning method for tackling regression issues is support vector regression 
(SVR). When examining the link between a dependant variable and one or more predictor variables, 
regression analysis is helpful. To learn a regression function that maps from input predictor variables to 
output observed response values, SVR formulates an optimisation problem [41]. SVR has a good 
performance for processing high-dimensional data and strikes a compromise between model complexity and 
prediction error [42]. 

4.5.2. Random Forest Regression (RFR) 

A random forest is a meta estimator that employs averaging to increase predicted accuracy and reduce 
overfitting. It helps in regression tasks which includes prediction of a continuous numerical variable. For 
using random forest regressor, a set of input features must be provided and their associated target values. 
RFR can handle many features [43]. 

4.5.3. Decision Tree Regression (DTR) 

A decision tree creates tree-like models for classification or regression problem. It incrementally 
develops an associated decision tree while segmenting a dataset into smaller and smaller sections. The 
outcome is a tree containing leaf nodes and decision nodes. Two or more branches, one for each value of the 
tested characteristic, can be found on a decision node. A choice regarding the numerical aim is represented 
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by a leaf node [44]. The root node is the topmost decision node in a tree and corresponds to the best 
predictor. Both category and numerical data can be processed using decision trees [45]. 

4.5.4. Gradient boosting Regression (GBR) 

It is a well-liked machine learning approach, utilised for both classification and regression problems. It 
is an ensemble method that creates a powerful prediction model by combining several weak models [46]. 

Gradient boosting's core principle is to iteratively add fresh weak models to the ensemble and then 
modify the weights of the samples in accordance with the mistakes. Each new model is specifically trained to 
forecast the residuals, or the discrepancies between true and anticipated values, of the older models. 

4.6. QSAR model building  

A QSAR model predicts the activity or property of a compound based on its structural and chemical 
properties. Methods required for model building- [47]. 

• A dataset must be prepared containing set of compounds with known activities and 
characteristics. The database should contain a variety of chemical structures that cover the 
relevant chemical space. 

• The data should be cleaned, pre-processed and be transformed into csv form which could be 
easily understood by the data analysis and machine learning tool.  

• The descriptors were generated and out of them important features were to be selected. 
• The selected features were split into training set and test set. 
• After that model was developed using various algorithm like SVR, DTR, RFR and GB [48]. 
• The hyperparameters were used for the tuning of the model for better performance. 
• The model was evaluated on the test data by using various statistical measures like coefficient 

of determination (R2), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). 

4.7. Hyperparameters  

Hyperparameters are parameters that are set by the user before training a machine learning model 
rather than being learned from the data during training. These variables regulate how the learning algorithm 
behaves and can greatly affect how well the model performs [49]. 

Hyperparameters example includes learning rate, hidden layers number, batch size, neurons present 
in each layer, activation functions and regularization of strength, etc. 

4.7.1. Hyperparameter Tuning  

Hyperparameter tuning is the method of choosing the ideal values for a machine learning model's 
hyperparameters, conducive to get the best performance on a particular task or dataset. Grid search is a 
popular method for hyperparameter tuning, which entails defining a range of values for each 
hyperparameter and then assessing the model's performance on a validation set for each set of 
hyperparameter values in the search space [50]. 

The learning rate, the maximum depth, the number of estimators, and the minimum number of 
samples necessary to split an internal node are the four hyperparameters that this dictionary provides for a 
tree-based machine learning model. A selection of potential values is given for each hyperparameter. 

These hyperparameters could be used in a grid search strategy to train a model, which compares all 
feasible combinations of hyperparameters to determine which combination performs the best on a validation 
set [51]. 

4.7.2. Hyperparameters in SVR  

The hyperparameters used in the RFR is ‘C,’ ‘Gamma’ and ‘Kernel’ - 
• ‘C’ - Support vector machines (SVMs) are frequently used in machine learning to control the 

trade-off between attaining a low training error and a low testing error. [52] 
• The penalty for incorrectly classifying training instances is set by the regularization parameter 

C. More misclassifications in the training set will be permitted by a lower value of C, which 
could lead to a more straightforward model with higher bias and lower variance [53]. A 
bigger value of C, on the other hand, will result in a more complex model with reduced bias 
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and higher variance since it will impose a stronger penalty for misclassifications. The values 
selected for hyperparameter tuning is [1,10,100], while the fine-tuned value came is 1. 

• ‘Gamma’ – The hyperparameter gamma is defined by impact of a single training example. It 
governs the flexibility of the decision border by deciding the bandwidth of the kernel 
function.[54] 

• The trade-off between overfitting and underfitting the data is controlled by the gamma value. 
A decision boundary with a more complex form will be produced by a larger gamma value, 
which may cause overfitting [55]. However, a lower gamma value will produce a smoother 
decision boundary, which may result in underfitting. The selected value for hyperparameter 
gamma is [1,0.1,0.001], the fine-tuned value came is 0.01. 

• ‘Kernel’- The type of kernel function to be utilized in a machine learning method is 
determined by a kernel hyperparameter. Several kernel functions, including linear, 
polynomial, and radial basis function (RBF) kernels, can be selected using the kernel 
hyperparameter [56]. 

• In machine learning, picking the appropriate kernel hyperparameter is crucial because it has a 
significant impact on the algorithm's performance[57]. The algorithm's accuracy and efficiency 
may be impacted by the kernel function selection, which may need to be adjusted to produce 
the best results for a given dataset.  

4.7.3. Hyperparameters in RFR  

The hyperparameters used in the RFR is ‘max_depth’ , ‘max_features’ and ‘n_estimators’. 
• ‘max_depth’ – ‘max_depth’ – The max_depth hyperparameter determines the level of decision 

nodes allowed in each tree. Hyperparameter tuning like grid search is used to find the optimal 
value for max_depth [58]. The optimal value will vary depending on the dataset and the 
issues arises. 

• ‘max_features’ – ‘max_features’ – This helps in analysis of text like document classification or 
sentiment analysis. It helps in determining the maximum features that are extricated from text 
data and to be used as input for the model [59]. ‘max_features’ help in reducing the 
dimensionality of data and avoid overfitting. Therefore, it is crucial to select a suitable value 
for max features based on the size of the dataset and the difficulty of the task. Important data 
may be lost if max features is set too low, and if it is set too high, overfitting and a slower 
model training process may result [60]. 

• ‘n_estimators’ – The n_estimators hyperparameter determines the size of the ensemble. The 
RFR model may perform better when the value of n_estimators is increased, but at the 
expense of more computing complexity and longer training times [61]. 

4.7.4. Hyperparameters in DTR  

The hyperparameters used in the DTR is ‘max_depth’, ‘min_samples_leaf’ and ‘min_samples_split’. 
• ‘max_depth’ – The max_depth hyperparameter controls the tree's maximum depth. Without a 

limitation on the depth, the tree can overcomplicate and overfit the training set, which would 
result in poor generalization to the test set [62]. Overfitting can be avoided, and the 
complexity of the tree can be managed by using the max_depth hyperparameter. 

• ‘min_samples_leaf’ – The min_samples_leaf sets the least number of samples required to be at 
leaf node of the tree. Specifying value for min_samples_leaf helps to prevent overfitting and 
controls the depth of the tree and reduces the variance of developed model [63].  

• ‘min_samples_split’ – It enumerates the minimum number of samples required to split an 
internal node. If samples present in a node is lesser than min_samples_split then the node 
does not split further and then it will become a leaf node. By guaranteeing that each internal 
node has sufficient samples to produce a trustworthy split, this can help prevent overfitting 
[64]. 

• Increasing the value for min_samples_split helps in building a simpler and easier 
understandable model; but accuracy gets suffered. Setting a smaller value, on the other hand, 
may result in overfitting as well as a more complex model with higher accuracy. The dataset 
and the issue that needs to be solved determine the ideal number for min samples split. 
Techniques like grid search can be used to fine-tune [65]. 
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4.7.5. Hyperparameters in GBR  

The hyperparameters used in the GBR is ‘max_depth’, ‘min_samples_leaf’ and ‘n_estimators’ – 
• ‘max_leaf_nodes’ – The max_leaf_node hyperparameter regulates the maximum number of 

leaf node in each ensemble. It limits the complexity and prevents overfitting. Lowering the 
value of max_leaf_node aids in preventing overfitting [66]. 

• ‘min_samples_leaf’ - The optimal value for min_samples_leaf depends on the complexity of 
the problem, the amount of training data available, and the desired balance between model 
performance and interpretability overfitting. A greater score, nevertheless, can also indicate 
underfitting if the model is overly straightforward and fails to account for the complexity of 
the data [67]. 

• ‘n_estimators’ - Each tree in a gradient boosting ensemble is trained using the mistakes of the 
previous tree. Performance can also be enhanced by increasing n estimators, although if the 
value is too high, overfitting may result [68] . The best value for n_estimators is determined by 
the dataset and the problem handled [69]. 

4.7.6. Hyperparameter fine-tuned values  

• The selected values for hyperparameter ‘C’, ‘Gamma’ and ‘kernel’ used in SVR model is 
[1,10,100], [1,0.1,0.01] and [rbf] and the fine-tuned values came are 1, 0.01 and rbf respectively.  

• The selected values for hyperparameter ‘n_estimators’, ‘max_features’ and ‘max_depth’ used 
in RFR model is [10,100,500], [sqrt, log2] and [5,10,20] and the fine-tuned values came are 10, 
log2 and 10 respectively. 

• The selected values for hyperparameter ‘max_depth’, ‘min_samples_split’ and 
‘min_samples_leaf’ used in DTR model is [7,8,9], [7,8,9] and [7,8,9] and the fine-tuned values 
came are 7, 7 and 9 respectively. 

• The selected values for hyperparameter ‘max_leaf_nodes’, ‘max_depth’ and 
‘min_samples_leaf’ used in GBR model is [7,8,9], [6,7,8] and [3,4,5] and the fine-tuned values 
came are 9, 7 and 4 respectively. 

• Table 3 mentioned the values of selected hyperparameter and fine-tuned hyperparameter. 

4.8. Model evaluation  

The performance of the models was assessed by calculating coefficient of determination (R2), root 
mean absolute error (RMSE) and mean absolute error (MAE) The equation as follows- 

4.8.1. Coefficient of determination (R2)  

It measures how much effectively a statistical model forecasts an outcome. The dependant variable in 
the model is a representation of the result. R2 can have a value of 0 or 1, with 1 being the maximum 
achievable. If a model’s R2 is closer to 1, therefore it means that its predictions are accurate. R2 is a more 
precise estimation of goodness of fit [70]. R2 gives a proportion amount of variation in the dependant 
variable that the model can explain. The equation of R2 is explained in Equation 1,2 and 3 [71], [26]. 

yᵢ - Actual value for the i-th data point 

𝑦" – Predicted value. 

𝑦#- Mean value                                                                                             

RSS = 𝛴(𝑦! − 𝑦"!)"                                                                                (1) 

TSS = 𝛴(𝑦! − 𝑦#)"                                                                                 (2) 

R2 = 1 − #$$
%$$

                                                                                          (3) 

RSS = Sum of square of residuals                               TSS = Total sum of squares 
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Table 3. Fine-tuned hyperparameters for the prediction of pIC50 of α-glucosidase inhibitors molecules 

Model Hyperparameter Selected Values Fine-tuned Values 
SVR C 1, 10, 100 1 
 Gamma 1, 0.1, 0.01 0.01 
 Kernel rbf rbf 
RFR n_estimators 10, 100, 500 10 
 max_features sqrt, log2 log2 
 max_depth 5,10,20 10 
DTR max_depth 7, 8, 9 7 
 min_samples_split 7, 8, 9 7 
 min_samples_leaf 7, 8, 9 9 
GBR max_leaf_nodes 7,8,9 9 
 max_depth 6,7,8 7 
 min_samples_leaf 3,4,5 4 

4.8.2. Mean Absolute Error (MAE)  

The effectiveness of a regression model is measured using the mean absolute error (MAE). It is 
described as the typical absolute difference between the model's projected values and the actual values of the 
underlying data [57]. When mistakes are distributed evenly across the data, the MAE, which reflects the 
mean magnitude of the model's errors in its predictions, is a helpful tool for assessing a model's 
performance. Since it is not sensitive to the existence of outliers, it is particularly helpful when the mistakes 
are symmetrically distributed and there are no extreme outliers. Here, n= number of observations, Eact = 
true value of the ith observation and Epred = predicated value of the ith observation. The bars represent the 
absolute value. Σ= Represents the sum of differences (As shown in Equation 4) [72], [26]. 

𝑀𝐴𝐸 = &
'
- .𝐸!

()*+ − 𝐸!,-..
'

'/&
                                                                 (4) 

4.8.3. Root Mean Absolute Error (RMSE)  

One of the methods most frequently used to assess the accuracy of forecasts is root mean square error, 
also known as root mean square deviation. It illustrates the Euclidean distance between measured true 
values and forecasts. For evaluating a model's performance in machine learning, whether during training, 
cross-validation, or monitoring after deployment, it is very helpful to have a single number [59]. One of the 
most popular metrics for this is root mean square error. It is an appropriate scoring method that is simple to 
comprehend and consistent with some of the most widely used statistical presumptions. RMSE is the 
average of the squared difference between the model’s predicted value and the actual value. Here, n= 
number of observations, Eact = true value of the ith observation and Epred = predicated value of the ith 
observation. The bars represent the absolute value. Σ= Represents the sum of differences (As shown in 
Equation 5) [73], [26]. 

𝑅𝑀𝑆𝐸 = 1&
'
- 2𝐸!

()*+ − 𝐸!,-.3
'

'/&
2                                                         (5) 
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