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ABSTRACT: In this work, a series of piperazine substituted indole derivatives were synthesized and evaluated for their 
in vitro antioxidant and anti-inflammatory activities. The results of antioxidant activity showed that compounds 2 
(81.63%) and 11 (85.63%) had comparable DPPH free radical scavenging activity to Vit E (88.6%). The in vitro anti-
inflammatory assays indicated that most of the compounds had more higher anti-inflammatory activities than standart 
ASA. Docking results revealed that compound 11 possessing the strongest anti-inflammatory activities showed the H-
bond interactions with the key residues of COX-2 active site. It suggested that the anti-inflammatory activity of the 
compounds might result from COX-2 inhibition. It will be verified with further enzyme inhibition assays. 
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 1 . INTRODUCTION 

Inflammation is a cellular protective response against a various triggering factors such as infectious 
agents, foreign pathogens, free radicals, tissue damage and cellular injury. Exaggerated and prolonged 
inflammation which seriously threatens human health may lead to tissue damage and various chronic diseases 
such as atherosclerosis, rheumatoid arthritis, sepsis, psoriasis, prostatitis, alzheimer and cancer [1,2]. Many 
enzymes, reactive oxygen, nitrogen and chlorine species and chemical mediators are released during the 
infiltration of inflammatory cells, and oxidative stress is induced[3]. Production of reactive species could 
initiate inflammation by activating multiple pathways such as redox-sensitive transcription factors including 
nuclear factor-kappaB (NF-kB) and activator protein-1 (AP-1). The reactive oxygen species (ROS) also is 
involved in conversion of arachidonic acid into proinflammatory intermediates and prostaglandins through 
cyclooxygenase-1 (COX-1) and lipoxygenase (LOX) [4-6]. Several studies show that inflammation and 
oxidative stress are related with each other in the development of many chronic disease such as diabetic 
complications [7,8] cardiovascular [9] and neurodegenerative diseases, [10,11] alcoholic liver disease, [12] and 
chronic kidney disease [13,14]. 

Indole compounds are one of the most studied heterocyclic scaffolds in medicinal chemistry because of 
their wide range of bioactivities such as anti-inflammatory, anti-viral, anti-HIV, anti-depressant, anti-
histaminic, anti-hypertensive, and anti-diabetic [15,16]. To date only a few indole-based anti-inflammatory 
agents have been reported. Indomethacin (Figure 1), approved by Food and Drug Administration (FDA) in 
1965 as a non-selective inhibitor of COX-1 and COX-2. It is used to reduce fever, pain and swelling by 
inhibiting the production of prostaglandins [17,18]. Tenidap (Figure 1) was developed as a COX/5-LOX 
inhibitor which have cytokine modulating anti-inflammatory and anti-rheumatoid activity. But, it was rejected 
due to its liver and kidney toxicity [19]. Acemetacin (Figure 1), [20] a prodrug of indomethacin, and etodolac 
(Figure 1), [21] a selective COX-2 inhibitor, are used for treatment of osteoarthritis and rheumatoid arthritis. 
Besides the anti-inflammatory effects of indomethacin, etodolac and acemetacin, they also have ROS and the 
reactive nitrogen species (RNS) scavenging activity [22]. Significant indole compounds such as melatonin, [23] 
tryptophan, serotonin, indole alkaloids, indole-3-acetic acid [24] and other synthetic derivatives [25-32] show 
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antioxidant potential by ROS and RNS scavenge ability. On the basis of the underlying mechanism of several 
chronic diseases, development of compounds inhibiting both oxidative stress and inflammation might be 
considered as an efficient approach for treatment of many diseases. 

 

Figure 1. Indole based anti-inflammatory drugs. 

We have previously reported the synthesis and in vitro antioxidant activity of a series of non substitue 

indole compounds bearing piperazine derivatives. They showed significant superoxide anion scavenging 
activity (88-69%) at 1 mM concentration [33]. In order to compare the activity, in this work, novel 5-methoxy 
and 5-fluoro indole derivatives (Figure 2) containing substituted-phenyl piperazine moiety at 2-position were 
synthesized. Their antioxidant and anti-inflammatory activity were evaluated. In addition, molecular docking 
of the most active compounds into COX-2 enzyme was performed by using Autodock vina.  

 

Figure 2. Designing of new 5-methoxy and 5-fluoro indole derivatives. 

2. RESULT AND DISCUSSION 

2.1. Chemistry 

The synthesis of the target compounds containing substituted-piperazine derivatives is outlined in 
Figure 3. Compound 1-11 were obtained by reacting 5-substituted-indole-2-carboxylic acid with appropriate 
piperazine derivatives in the presence of carbonyldiimidazole (CDI) in anhydrous tetrahydrofuran (THF) 
under nitrogen atmosphere [34]. The structures of all synthesized compounds were characterized by 1H NMR, 
13C NMR, MASS and elementel analysis. In the 1H NMR spectra, the signal of the piperazine protons was 
observed as two broad singlet or triplet at around 2.41-3.61 ppm and 3.72-3.93 ppm for each molecule. NH 
proton of indole ring was observed as a characteristic singlet, which ranged from 11.38 to 11.72 ppm. H-3 
proton of indole ring was detected between 6.67-6.84 ppm for each molecule. In the spectrum of the 
compounds 7 and 8, a singlet at 3.49 and 3.50 ppm was observed due to the CH2 protons, respectively.  

 

Figure 3. Synthesis of indole containing piperazine derivatives (1-11). 
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2.2. Biological activity 

The target compounds were evaluated for their antioxidant activity by using different methodologies 
such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) stable radical and superoxide anion scavenging activity and 
lipid peroxidation (LP) inhibition. The obtained results were compared with the standard antioxidant vitamin 
E (Vit-E) in Table 1. Compounds 2 (81.63%) and 11 (85.63%) showed the highest DPPH free radical scavenging 
activity at 0.1 mM concentration, respectively. All compounds, except 2 and 11, displayed no scavenging effect 
on LP and superoxide anion at 0.1 and 0.01 mM concentrations. Compound 2 had strong superoxide anion 
scavenging activity (51%) and comparable LP inhibition (46%) with vit-E (51%) at 0.1 mM. Better LP inhibition 
activity (79%) than vit-E (51%) was observed with compound 11 at 0.1 mM. Otherwise, compound 11 exhibited 
low superoxide anion scavenging activity (22%). Compounds 5, 8 and 10 showed no inhibition effect on all 
assay. 

Table 1. Antioxidant activities of the newly synthesized compounds (1-11). 

 

 

DPPH Free Radical 

Scavenging Activity 

(%)a,b,c 

Inhibition of 

LP (%)a,b,c  

Superoxide anion 

scavenging 

activity (%)a,b,c  

Compd. R1 R2 n 0.1 mM 0.01 mM 0.1 mM 0.01 mM 0.1 mM 0.01 mM 

1 F CH3 0 14.63±0.43 2.88±0.04 NA NA NA NA 

2 OCH3 CH3 0 81.63±0.04 25±0.04 46±2 40±1 51±3 42±3 

3 F F 0 4.73±0.94 3.66±1.85 NA NA NA NA 

4 OCH3 F 0 6.93±0.38 4.04±0.25 5±0.5 NA NA NA 

5 F CF3 0 NA NA NA NA NA NA 

6 OCH3 CF3 0 2.62±0.38 NA NA NA NA NA 

7 F F 1 2.54±0.55 NA NA NA NA NA 

8 OCH3 F 1 NA NA NA NA NA NA 

9 OCH3 Cl 0 2.15±0.94 NA NA NA NA NA 

10 OCH3 NO2 0 NA NA NA NA NA NA 

11 F OH 0 85.63±0.43 15.66±0.86 79±3 68±2 22±2 NA 

Vit E    88.6±0.04 49.18±0.81 51±5 28±2 35±3 11±3 

aThe values represent the average of 3 determinations ± SD. 
bCompounds were diluted with DMSO (solvent showed no antioxidant activity). 
cp < 0.05 vs. DMSO by ANOVA/Tukey’s test. NA; no activity. 

The human red blood cell (HRBC) membrane stabilization could be a significant in vitro measure of anti-

inflammatory activity of the drugs. The membrane stabilizing activities of the newly synthesized compounds 
(1-11) and previously synthesized compounds (12-26) [33] were evaluated using heat induced human 
erythrocyte hemolysis in comparison with acetylsalisilic acid (ASA) used as reference drug. Table 2 depicted 
that 5-substituted indole derivatives (1-11, except compound 4) showed more inhibition of heat induced 
hemolysis compared to indole derivatives (12-26) as well as ASA. Substitution at 5-position of the indole 
ring with fluoro and methoxy groups might have contributed to the increased anti-inflammatory potency 

of the compounds. Replacement of fluoro (1, IC50=1.19 mM) with methoxy (2, IC50= 0.68 mM) at 5-position of 
indole ring, resulted in 1.7-fold increase in membrane stabilizing activity. In contrast, the same methoxy 
substitution at 5-position of indole ring decreased the activity of compounds 4, 6 and 8 relative to compound 
3, 5 and 7. Replacing the hydroxyl group at 4’-position of phenyl piperazine moiety (11, IC50= 0.33 mM ) with 
fluoro (3, IC50= 0.64 mM ) and methyl (1, IC50= 1.19 mM) caused a dramatic loss in membrane stabilization 
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activity, while the trifluoromethyl group (5, IC50= 0.43 mM) is well tolerated. In case of 5-methoxy indole 
derivatives, the nitro group at 4’-position of phenyl piperazine exhibited stronger membrane stabilization 
activity (10, IC50= 0.40 mM) than corresponding derivatives bearing chloro (9), CF3 (6), fluoro (4) and methyl 
(2). The compounds 2 and 11 were found 2- and 4.3-fold more active than ASA as anti-inflammatory activity 
which showed the correlation with antioxidant activity of them. Although 5-methoxy substitution on indole 
ring resulted in 5.8-fold increase in membrane stabilization activity of compound 10 compared to 
corresponding indole derivative 21, it did not lead to significantly change in membrane stabilization activity 
of the compounds 4 and 22. 

Table 2. Human red blood cell membrane stabilizing effects of the compounds. 

 

Compd.a R1 R2 n 
IC50 ± SD 

(mM) 
Compd.a R1 R2 n 

IC50 ± SD 
(mM) 

1 F CH3 0 1.19±0.05* 14 H 3-nitro-2-pyridyl 0 2.21±0.03* 

2 OCH3 CH3 0 0.68±0.01* 15 H CH3 0 1.95±0.01* 

3 F F 0 0.64±0.01* 16 H CH2CH2OH 0 1.83±0.05* 

4 OCH3 F 0 3.11±0.02* 17 H 3-chlorobenzyl 0 2.54±0.01* 

5 F CF3 0 0.43±0.01* 18 H diphenylmethyl 0 2.76±0.06* 

6 OCH3 CF3 0 0.54±0.02* 19 H cyclohexyl 0 2.38±0.08* 

7 F F 1 0.46±0.04* 20 H phenyl 0 5.45±0.09* 

8 OCH3 F 1 0.68±0.02* 21 H p-nitrophenyl 0 2.34±0.03* 

9 OCH3 Cl 0 0.56±0.01* 22 H p-fluorophenyl 0 3.84±0.02* 

10 OCH3 NO2 0 0.40±0.03* 23 H pyrimidine-2-yl 0 2.32±0.07* 

11 F OH 0 0.33±0.02* 24 H acetyl 0 1.97±0.01* 

12 H CHO 0 2.32±0.01* 25 H cyclopropylcarbonyl 0 1.73±0.02* 

13 H H 0 2.27±0.02* 26 H ethoxycarbonyl 0 2.30±0.02* 

ASA    1.42±0.03*      

a Synthesis of compound 12-26 was previously reported in lit. 33. (*) Statistically significant as compared to control. p<0.05.  

2.3. Molecular docking and prediction of molecular properties 

In order to understand whether the anti-inflammatory activity of the compounds is correlated with 
COX-2 (PDB code: 3NT1) enzyme inhibition, the molecular docking study was performed using Autodock 
vina. Firstly, the validation of the docking procedure was done by docking of crystallographic naproxen over 
3NT1. The docked naproxen is superimposed on crystallographic naproxen forming two hydrogen bonds with 
Arg120 and one hydrogen bond with Tyr355 and RMSD value was found as 0.702 Å (Figure 4, left) [35]. 
Compound 11 possessing the best anti-inflammatory activity formed a hydrogen bond between amide 
carbonyl and NH of Arg120 at the distance of 2.23 Å (Figure 4, right). The docking results suggested that the 
anti-inflammatory activities of the compound 11 might correlate with its COX-2 interactions. In order to verify 
the results of molecular docking and present the mechanism of anti-inflammatory activity, further COX-2 
enzyme inhibition studies will be performed.  

Molecular properties of the synthesized compounds (1–11) were calculated using online Molinspiration 
property program [36]. The predicted volume, topological polar surface area (TPSA), number of violations 
and Lipinski parameters [37] such as molecular weight (MW), number of rotatable bonds (nROTB), number 
of hydrogen bond acceptors (nON) number of hydrogen bond donors (nOHNH), and lipophilicity (miLogP) 

were calculated. As shown in Table 3, all compounds confirm the Lipinski’s rules with logP values ranged 
from 2.11-4.35, MW ranging from 339.40-403.40, HBA value of ≤10, HBD value of ≤5 and nROTB values of <10. 
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The percentage of absorption (%ABS) is calculated by using %ABS = 109 − (0.345 x TPSA) [38]. All compounds 
(except compound 10) have the good ABS% value of >80%, suggesting that the synthesized compounds 
provide acceptable flexibility and favorable permeability and oral bioavailability. 

 

Figure 4. The superimposition of crystal naproxen (yellow) and docked naproxen (magenta) (left). The 
predicted binding mode of compound 11 (green) in the catalytic site of COX-2 (pdb code: 3NT1) are 
generated by the programme PyMOL (right). The hydrogen bonds are presented by dotted green lines and 
residues forming hydrogen bonds with ligand are shown in element coloured line. 

Table 3. Prediction of molecular properties parameters and drug-likeness scores of indole containing 
piperazine derivatives (1-11). 

Cpd MWa Volume %ABSb TPSAc nROTBd nONe nOHNHf LogPg nviolations 

Rule <500 - - - <10 ≤10 ≤5 ≤5 ≤1 
1 337.40 306.84 95.43 39.34 2 4 1 3.04 0 
2 349.43 327.45 92.25 48.57 3 5 1 3.91 0 
3 341.36 295.21 95.43 39.34 2 4 1 2.76 0 

   4 353.40 315.82 92.25 48.57 3 5 1 3.62 0 
5 391.37 321.57 95.43 39.34 3 4 1 3.49 0 
6 403.40 342.19 92.25 48.57 4 5 1 4.35 0 
7 355.39 312.01 95.43 39.34 3 4 1 2.46 0 
8 367.42 332.62 92.25 48.57 4 5 1 3.32 0 
9 369.85 324.43 92.25 48.57 3 5 1 4.14 0 
10 380.40 334.23 76.43 94.40 4 8 1 3.42 0 
11 339.37 298.30 88.44 59.57 2 5 2 2.11 0 

a MW: Molecular weight; b %ABS: Percentage absorption; cTPSA: Topological polar surface area; d nROTB: Number of 
rotatable bonds; e nON: Number of hydrogen acceptors; f nOHNH: Number of hydrogen donors; g LogP: Log 

octanol/water partition coefficient. 

3. CONCLUSION 

In conclusion, several 5-substituted indole derivatives bearing piperazine group were synthesized for 
evaluation of their antioxidant and anti-inflammatory activity based on our previously obtained results from 
corresponding non-substituted indole derivatives [33]. The in vitro antioxidant and anti-inflammatory activity 

results revealed that the 5-substituted indoles were more active than non-substituted indole derivatives, 
suggesting substitution at 5-position of indole ring could be important for activity. Compounds 2 and 11 
possessing the highest DPPH radical scavenging activity also showed strong anti-inflammatory activity with 
IC50 value of 0.68 and 0.33 mM. Moreover, compound 11 located into active site of COX-2 forming hydrogen 
bond with Arg120. In the future, whether the strong anti-inflammatory activity of compound 11 result from 
COX-2 inhibition will be evaluated. 

4. MATERIALS AND METHODS 

The chemical reagents were purchased from commercial suppliers and used without further 
purification. The reactions were monitored and the purity of the products was checked by thin layer 
chromatography (TLC). Merck silica gel 60 F254 chromatoplates were used for TLC. Uncorrected melting points 
were measured on a Büchi B-540 capillary melting point apparatus. 1H (400 MHz) and 13C (100 MHz) NMR 
spectra were recorded on Varian Mercury 400 MHz FT spectrometer (Agilent Technologies, USA) in DMSO-
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d6, CDCl3, and CD3OD as solvent. The chemical shifts (δ) were recorded in parts per million relative to 
tetramethylsilane (TMS) and coupling constants (J) are reported in Hertz. The Mass spectra were recorded on 

a Waters micromass ZQ, using ESI(+). Elemental analysis were carried by Leco-932 CHNS-O analyzer. The 
results of the elemental analysis (C, H, N) were within ±0.4% of the calculated amounts. Biological assays were 
carried by using a microplate reader (SpectraMax 190, Molecular Devices, USA). 

4.1. General procedure for the synthesis of compounds  

A solution of CDI in THF (3 ml, 3.7 mmol) was added to 5-substituted-indole-2-carboxylic acid (3.1 
mmol) in THF (5 ml) at room temperature and stirred for 1 h under N2 atmosphere. Then, the reaction mixture 
was cooled to 0°C and N-substituted piperazine derivatives (3.7 mmol) in THF (3 ml) were added and stirred 
for further 17-18 h at room temperature. Basic work-up (CHCl3, sat. NaHCO3) was applied, evaporated under 
vacuo and recrystallization from ethyl acetate:n-hexane provided the desired compounds. 

4.1.1. (5-Fluoro-1H-indol-2-yl)(4-(p-tolyl)piperazin-1-yl)methanone (1) 

CAS Registry Number: 2325638-42-2. Yield: 62%; mp.: 233-234 °C. 1H-NMR (400 MHz, DMSO-d6); δ 
ppm: 2.19 (s, 3H, -CH3), 3.14 (t, 4H, piperazine-H), 3.87 (bs, 4H, piperazine-H), 6.81 (d, 1H, Jm=1.6 Hz, H-3), 
6.86 (d, 2H, Jo=8.8 Hz, H-2’,6’), 7.01-7.07 (m, 3H), 7.36 (dd, 1H, Jm=2.8 Hz, Jo=10 Hz), 7.41 (dd, 1H, Jm=4.4 Hz, 
Jo=8.8 Hz), 11.71 (s, 1H, N-H). 13C-NMR δ ppm (DMSO-d6): 19.957; 49.043; 103.950; 105.386; 111.795; 113.155; 
116.070; 126.787; 128.194; 129.352; 131.539; 132.583; 148.563; 155.893; 158.210; 161.593. MS (ESI +) m/z: 338.3 
(M + H, 100%). Anal. Calcd for C20H20FN3O·0.1H2O: C, 70.81; H, 6.00; N, 12.38. Found: C, 70.84; H, 6.21; N, 
12.31. 

4.1.2. (5-Methoxy-1H-indol-2-yl)(4-(p-tolyl)piperazin-1-yl)methanone (2) 

Yield: 53%; mp.: 203-205 °C. 1H-NMR (400 MHz, DMSO-d6); δ ppm: 2.25 (s, 3H, -CH3), 3.20 (bs, 4H, 

piperazine-H), 3.80 (s, 3H, -OCH3), 3.93 (bs, 4H, piperazine-H), 6.79 (s, 1H, H-3), 6.88-6.93 (m, 3H), 7.09-7.13 
(m, 3H), 7.37 (d, 1H, Jo=8.8, H-7), 11.50 (s, 1H, N-H). 13C-NMR δ ppm (DMSO-d6): 20.038; 49.155; 55.228; 101.894; 

103.845; 112.874; 114.307; 116.151; 127.086; 128.290; 129.433; 130.134; 131.186; 148.621; 153.741; 161.994. MS 
(ESI +) m/z: 350.5 (M + H, 100%). Anal. Calcd for C21H23N3O2·0.1H2O: C, 71.81; H, 6.65; N, 11.96. Found: C, 
71.76; H, 6.69; N, 11.89. 

4.1.3. (5-Fluoro-1H-indol-2-yl)(4-(4-fluorophenyl)piperazin-1-yl)methanone (3) 

CAS Registry Number: 902025-79-0. Yield: 24%; mp.: 242-244 °C. 1H-NMR (400 MHz, DMSO-d6); δ ppm: 
3.16 (t, 4H, piperazine-H), 3.88 (bs, 4H, piperazine-H), 6.82 (s, 1H, H-3), 6.97-7.10 (m, 5H), 7.37 (dd, 1H, Jm=2.4 
Hz, Jo=9.6 Hz), 7.42 (dd, 1H, Jm=4.4 Hz, Jo=8.8 Hz), 11.72 (s, 1H, N-H).13C-NMR δ ppm (DMSO-d6): 49.376; 

104.054; 105. 467; 111.895; 113.240; 115.366; 117.690; 126.853; 131.574; 132.664; 147.614; 155.128; 155.974; 157.475; 
158.283; 161.674. MS (ESI +) m/z: 342.2 (M + H, 100%). Anal. Calcd for C19H17F2N3O: C, 66.85; H, 5.01; N, 12.30. 
Found: C, 66.62; H, 5.21; N, 12.20. 

4.1.4. (4-(4-Fluorophenyl)piperazin-1-yl)(5-methoxy-1H-indol-2-yl)methanone (4) 

CAS Registry Number: 878987-70-3. Yield: 28%; mp.: 172-173 °C. 1H-NMR (400 MHz, DMSO-d6); δ ppm: 
3.15 (t, 4H, piperazine-H), 3.74 (s, 3H, -OCH3), 3.88 (bs, 4H, piperazine-H), 6.73 (s, 1H, H-3), 6.84 (dd, 1H, Jm=2.4 
Hz, Jo=8.8 Hz, H-6), 6.96-7.00 (m, 2H), 7.05-7.09 (m, 3H), 7.31 (d, 1H, Jo=8.8 Hz), 11.45 (s, 1H, N-H). 13C-NMR δ 
ppm (DMSO-d6): 49.391; 55.220; 101.894; 103.867; 112.874; 114.330; 115.358; 117.667; 127.078; 130.096; 131.193; 

147.645; 153.749; 155.113; 157.452; 161.994. MS (ESI +) m/z: 354.2 (M + H, 100%). Anal. Calcd for 
C20H20FN3O2·0.2H2O: C, 67.28; H, 5.75; N, 11.77. Found: C, 67.12; H, 5.79; N, 11.71. 

4.1.5. (5-Fluoro-1H-indol-2-yl)(4-(4-(trifluoromethyl)phenyl)piperazin-1-yl)methanone (5) 

Yield: 24%; mp.: 297-298 °C. 1H-NMR (400 MHz, DMSO-d6); δ ppm: 3.43 (t, 4H, piperazine-H), 3.90 (bs, 
4H, piperazine-H), 6.84 (s, 1H, H-3), 7.04 (dd, 1H, Jo=9.2 Hz, Jm=2.4 Hz), 7.08 (d, 2H, Jo=8.4 Hz, H-2’,6’), 7,37 
(dd, 1H, Jm=2.8 Hz, Jo=9.6 Hz) 7.43 (dd, 1H, Jm=4.8 Hz, Jo=9.2 Hz), 7.53 (d, 2H, Jo=8.8 Hz, H-3’,5’), 11.69 (s, 1H, 
N-H). 13C-NMR δ ppm (DMSO-d6): 46.869; 104.199; 105.490; 111.838; 112.097; 113.266; 114.178; 117.889; 118.201; 

123.604; 126.248; 126.868; 131.498; 132.687; 152.796; 155.974; 158.291; 161.758. MS (ESI +) m/z: 392.2 (M + H, 
100%). Anal. Calcd for C20H17F4N3O: C, 61.37; H, 4.37; N, 10.73. Found: C, 61.07; H, 4.44; N, 10.64. 
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4.1.6. (5-Methoxy-1H-indol-2-yl)(4-(4-(trifluoromethyl)phenyl)piperazin-1-yl)methanone (6) 

Yield: 49%; mp.: 198-200 °C. 1H-NMR (400 MHz, DMSO-d6); δ ppm: 3.42 (t, 4H, piperazine-H), 3.75 (s, 
3H, -OCH3), 3.91 (bs, 4H, piperazine-H), 6.76 (d, 1H, Jm=2 Hz, H-3), 6.85 (dd, 1H, Jm=2.8 Hz, Jo=9.2 Hz, H-6), 
7.07 (d, 2H, Jo=8 Hz, H-2’,6’), 7.08 (d, 1H, Jm=2), 7.32 (d, 1H, Jo=8.4 Hz, H-7), 7.53 (d, 2H, Jo=8.4 Hz, H-3’,5’), 
11.47 (s, 1H, N-H). 13C-NMR δ ppm (DMSO-d6): 46.869; 55.220; 101.894; 104.005; 112.905; 114.147; 114.406; 
117.843; 118.155; 123.604; 126.240; 127.101; 130.027; 131.209; 152.812; 153.749; 162.070. MS (ESI +) m/z: 404.4 
(M + H, 100%). Anal. Calcd for C21H20F3N3O2: C, 62.52; H, 4.99; N, 10.41. Found: C, 62.76; H, 5.34; N, 10.10. 

4.1.7. (5-Fluoro-1H-indol-2-yl)(4-(4-fluorobenzyl)piperazin-1-yl)methanone (7) 

Yield: 18%; mp.: 192-193 °C. 1H-NMR (400 MHz, DMSO-d6); δ ppm: 2.41 (t, 4H, piperazine-H), 3.49 (s, 
2H, -CH2-), 3.72 (bs, 4H, piperazine-H), 6.73 (d, 1H, Jm=1.6, H-3), 7.02 (t, 1H), 7.11-7.16 (m, 2H, H-3’,5’), 7.31-
7.36 (m, 3H), 7.39 (dd, 1H, Jm=4.8 Hz, Jo=8.8 Hz), 11.63 (s, 1H, N-H). 13C-NMR δ ppm (DMSO-d6): 52.465; 60.820; 
103.849; 105.375; 111.739; 113.144; 114.868; 126.813; 130.677; 131.645; 132.575; 133.899; 155.908; 158.222; 160.063; 
161.531; 162.474. MS (ESI +) m/z: 356.5 (M + H, 100%). Anal. Calcd for C20H19F2N3O: C, 67.59; H, 5.38; N, 11.82. 
Found: C, 67.49; H, 5.37; N, 11.73. 

4.1.8. (4-(4-Fluorobenzyl)piperazin-1-yl)(5-methoxy-1H-indol-2-yl)methanone (8) 

Yield: 19%; mp.: 163-165 °C. 1H-NMR (400 MHz, DMSO-d6); δ ppm: 2.42 (bs, 4H, piperazine-H), 3.50 (s, 
2H, -CH2-), 3.74 (s, 7H, piperazine-H and -OCH3), 6.67 (d, 1H, Jm=1.6 Hz, H-3), 6.83 (dd, 1H, Jm= 2.4 Hz, Jo=8.8 
Hz, H-6), 7.04 (d, 1H, Jm=2.4 Hz, H-4), 7.15 (t, 2H, H-3’,5’), 7.30 (d, 1H, Jo=8.8 Hz, H-7), 7.36 (m, 2H, H-2’,6’), 
11.41 (s, 1H, N-H). 13C-NMR δ ppm (DMSO-d6): 52.546; 55.213; 60.859; 101.879; 103.730; 112.836; 114.238; 

114.825; 115.039; 127.063; 130.180; 130.751; 131.132; 153.711; 160.112; 161.887; 162.520. MS (ESI +) m/z: 368.5 
(M + H, 100%). Anal. Calcd for C21H22FN3O2: C, 68.64; H, 6.03; N, 11.43. Found: C, 68.42; H, 6.12; N, 11.38. 

4.1.9. (4-(4-Chlorophenyl)piperazin-1-yl)(5-methoxy-1H-indol-2-yl)methanone (9) 

Yield: 35%; mp.: 191-192 °C. 1H-NMR (400 MHz, DMSO-d6); δ ppm: 3.21 (t, 4H, piperazine-H), 3.75 (s, 
3H, -OCH3), 3.88 (bs, 4H, piperazine-H), 6.75 (d, 1H, Jm=1.2 Hz, H-3), 6.85 (dd, 1H, Jm=2.4 Hz, Jo=8.8 Hz, H-6), 
6.97 (d, 2H, Jo=9.2 Hz, H-2’,6’), 7.07 (d, 1H, Jm=2.4 Hz, H-4), 7.26 (d, 2H, Jo=9.2 Hz, H-3’,5’), 7.32 (d, 1H, Jo=8.4 
Hz, H-7), 11.46 (s, 1H, N-H). 13C-NMR δ ppm (DMSO-d6): 48.732; 55.714; 102.386; 104.393; 113.376; 114.845; 

117.621; 123.231; 127.572; 129.175; 130.560; 131.689; 149.982; 154.239; 162.504. MS (ESI +) m/z: 370.4 (M + H, 
100%), 372.5 (M + 2, 33%). Anal. Calcd for C20H20ClN3O2: C, 64.95; H, 5.45; N, 11.36. Found: C, 65.11; H, 5.65; 
N, 11.38. 

4.1.10. (5-Methoxy-1H-indol-2-yl)(4-(4-nitrophenyl)piperazin-1-yl)methanone (10) 

Yield: 37%; mp.: 224-226 °C. 1H-NMR (400 MHz, DMSO-d6); δ ppm: 3.61 (s, 4H, piperazine-H), 3.75 (s, 
3H, -OCH3), 3.92 (s, 4H, piperazine-H), 6.76 (s, 1H, H-3), 6.85 (d, 1H, Jo=8.4 Hz), 6.98 (d, 2H, Jo=8.8 Hz, H-2’,6’) 
7.07 (s, 1H), 7.33 (d, 1H, Jo=9.2 Hz), 8.07 (d, 2H, Jo=8.8 Hz, H-3’,5’), 11.38 (s, 1H, N-H). 13C-NMR δ ppm (DMSO-
d6): 45.787; 55.205; 101.970; 104.081; 112.227; 112.844; 114.406; 125.638; 127.094; 129.928; 131.201; 136.931; 

153.726; 153.168; 162.093. MS (ESI -) m/z: 379.5 (M - H, 100%). Anal. Calcd for C20H20N4O4·2H2O: C, 57.68; H, 
5.8; N, 13.45. Found: C, 57.68; H, 5.90; N, 13.49. 

4.1.11. (5-Fluoro-1H-indol-2-yl)(4-(4-hydroxyphenyl)piperazin-1-yl)methanone (11) 

Yield: 45%; mp.: 234-236 °C. 1H-NMR (400 MHz, DMSO-d6); δ ppm: 3.02 (t, 4H, piperazine-H), 3.86 (bs, 
4H, piperazine-H), 6.67 (d, 2H, Jo=8.8 Hz, H-2’,6’), 6.80 (d, 1H, Jm=1.6 Hz, H-3), 6.83 (d, 2H, Jo=9.2 Hz, H-3’,5’), 
7.05 (td, 1H, Jm=2.4 Hz, Jo=9 Hz), 7.36 (dd, 1H, Jm=2.4 Hz, Jo=9.6 Hz), 7.42 (dd, 1H, Jm=4.8 Hz, Jo=8.6 Hz), 8.89 
(s, 1H, OH), 11.71 (s, 1H, N-H).13C-NMR δ ppm (DMSO-d6): 28.969; 30.363; 50.557; 103.989; 105.456; 111.845; 

113.217; 115.496; 118.460; 126.857; 131.658; 132.649; 143.843; 151.417; 155.966; 158.283; 161.636. MS (ESI +) m/z: 
340.1 (M + H, 100%). Anal. Calcd for C19H18FN3O2·0.5C6H14·0.3H2O: C, 68.12; H, 6.65; N, 10.83. Found: C, 68.15; 
H, 6.43; N, 10.49. 

4.2. In vitro antioxidant activities 

4.2.1. Superoxide radical scavenging activity (Cytochrome C Assay) 

Superoxide radical scavenging activities of the synthesized compounds was determined according to a 
previously described method [39]. All experiments were carried out in triplicate and the results were given as 
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a percentage of the control. Vit-E was used as a positive control. Superoxide radical scavenging capacity was 
calculated using the formula given below: 

Superoxide radical scavenging activity (%) = [(Acontrol – Atest) /(Acontrol – Ablank)] x100 (Eq. 1) 

Acontrol= the absorbance of the control excluding test compounds; Atest= is the absorbance of the test 
compound; Ablank= the absorbance of the blank excluding test compounds and the superoxide radical 
generating system. 

4.2.2. DPPH free radical scavenging activity 

The free radical scavenging activity of the compounds was determined using a previously described 
method with DPPH radicals [40]. Each experiment was carried out in triplicate and α -tocopherol was used as 
standard. The ability to scavenge DPPH radicals was calculated from the following equation:  

DPPH free radical scavenging activity (%) = [(Acontrol – Atest) /Acontrol] x 100   (Eq. 2) 

Atest= the absorbance of DPPH radical and compounds; Acontrol= the absorbance recorded for methanolic 
solution of DPPH and DMSO solution excluding test compounds.  

4.2.3. Lipid peroxidation  

The effect of the synthesized compounds on rat liver homogenate induced with FeCl2-ascorbic acid, and 
LP was measured by the method descibed previously [41]. α-Tocopherol was used as a standard. Each 
experiment was performed in triplicate. Lipid peroxidation inhibitory activity (%) was calculated from the 
folowing equation: 

LP inhibitory activity (%) = [(Acontrol – Atest) / (Acontrol – Ablank)] x 100    (Eq. 3) 

Acontrol= the absorbance of the control excluding test compounds; Atest= the absorbance of the test 
compounds; Ablank= the absorbance of the blank excluding test compounds and the free radical generating 
sytem (Fe+2 / ascorbate). 

4.2.4. Anti-inflammatory activity 

Fresh whole human blood was collected from healthy human volunteer who did not take any anti-
inflammatory or steroidal drug for 2 weeks prior the experiment. The tubes were centrifuged at 3000 rpm for 
10 min. The packed cells were washed with equal volume of isosaline (0.85%, pH 7.2). The volume of the blood 
was measured and reconstituted as 10% v/v suspension with isosaline. The membrane stabilizing activities of 
the compounds were evaluated using heat induced human erythrocyte hemolysis, designed by Anosike et al 
and Debnath et al with minor modifications. The reaction mixture consisted of equal volume of test sample 
and 10% red blood cells suspension. All the centrifuge tubes containing reaction mixture were incubated at 56 
ºC for 30 min. At the end of the incubation the tubes were cooled. The reaction mixture was centrifuged at 
2500 rpm for 5 min. Then the absorbance of the supernatant was measured at 560 nm. The experiment was 
performed in triplicates for all the test samples. The results were expressed as the half maximal inhibitory 
concentration (IC50) [42, 43]. ASA was used as a standard drug. The percentage hemolysis and protection was 
calculated according to the formula: 

Hemolysis% = (Absorbancetest sample/ Absorbancecontrol)×100     (Eq. 4) 

Protection% = 100 – [(Absorbancetest sample/ Absorbancecontrol)×100]    (Eq. 5) 

4.3. Molecular docking and molecular properties prediction 

Molecular docking was carried out by using AutodockVina program. X-ray crystal structure of COX-2 
(PDB ID: 3NT1) and the relative ligand were downloaded from Protein Data Bank (http://www.rcsb.org). 
AutoDock-Tools 1.5.6 (ADT) was used for preparing the pdbqt files. The protein was optimized by removing 

http://www.rcsb.org/
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water and co-crystallized ligand. Then polar hydrogens were added. Compounds were also energetically 
minimized. A grid box of 16×16×16 Å (x, y, and z) was created around the enzyme active pocket with the 
spacing of 1 Å and has the average coordinates of the crystallographic ligand in the pdb structure. 
Exhaustiveness was set to 10. Other vina docking parameters were set to default. The 3D compound-protein 
docking posses were analyzed manually using AutoDockTools. 

Physicochemical features such as topological surface area, number of rotatable bonds and hydrogen 
bond acceptors & donors and Log P were calculated using Mol inspiration online tool [36].  

4.4. Statistical analysis 

The Statistical Package for the Social Sciences (SPSS) version 25.0 was used to perform the statistical 
analysis. All experiments were done in triplicate and the results were expressed as mean±SD. For the data, the 
analysis of variance was used to determine whether there are any significant differences between the means 
of the groups (ANOVA, Tukey’s test). The differences between the groups were evaluated with Kruskal-Wallis 
test. p < 0.05 was considered statistically significant. 
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