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ABSTRACT: The objective of the current study was to design a suitable model to predict the cytotoxicity induced by 
SiO2 and TiO2 nanoparticles in different conditions using computational models. To achieve this, we employed various 
statistical approaches such as linear regression, as well as artificial neural networks and support vector machine (non-
linear models). The effective input parameters of the SiO2 nanoparticles were particle size, particle concentration, and 
cell exposure time. In the case of the TiO2 nanoparticles, the particle size and concentration served as input variables. 
Cell viability was considered the output response for both nanoparticles. The modeling was performed using both linear 
and non-linear methods. In addition, an external validation analysis was conducted to evaluate the predictability of the 
models by splitting the data into training and test data. The best models to predict cell viability were the models 
developed by artificial neural network. The results of this investigation indicate that non-linear models could be 
superior to linear models in predicting cell viability for SiO2 and TiO2 nanoparticles. 
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 1.  INTRODUCTION 

A great variety of novel nanoparticles and their industrial applications raise concerns about their 
potential toxicity [1, 2]. Due to the expensive and time-consuming nature of the empirical assessments of the 
cytotoxicity of nanoparticles, it is favorable to use computational methods in order to predict the potential 
toxicity and environmental impact of such materials [3-5]. Recently, chemometric methods, including linear 
models like multiple linear regression (MLR) and non-linear models like artificial neural network (ANN) and 
support vector machine (SVM), have been widely used. MLR, the most common form of linear regression 
analysis, is a statistical approach for modeling the relationship between activity and independent descriptors 
[6, 7]. In addition to MLR, non-linear models such as the ANN and SVM approaches were investigated for 
both nanoparticles. They can be successfully applied in various fields, especially in pharmaceutical processes, 
where experimental information is available. In short, ANN takes input data in an input layer, computes the 
relationships between them in hidden layer(s), and finally the neurons generate an output layer based on the 
weighted sum of all inputs [8-10]. SVM is based on statistical learning theory, which consists of a training 
phase with associated input and output values. It creates a hyperplane in a multidimensional space to map 
the input related to the activity onto a higher-dimensional feature space by the kernel function. SVM was used 
to model the physicochemical property and activity of the drugs [11-13]. 

The employment of such models in nanoscience not only reduces the assessment costs but also helps in 
designing safe nanomaterial. This issue is very critical in nanotechnology because of the lack of comparable, 
consistent, and publicly accessible toxicity data [14,15]. However, few studies have focused on the application 
of a chemometrics-based model in the prediction of the physicochemical, biological, and fate properties 
(cytotoxicity) of nanomaterial [16, 17]. Cordeiro and his coworkers [18, 19] in 2014 have been reported the 
toxicity prediction of nanoparticles by different analysis methods, such as the linear discriminant analysis, for 
evaluating the safety of nanoparticles.  
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In the current study, the cell viability of human embryonic kidney cells (HEK293) and mouse 
macrophages (Ana-1 cells), when exposed to the SiO2 and TiO2 nanoparticles, respectively, were considered 
as two data sets. Herein, the MLR, ANN, and SVM models were applied to predict the cytotoxicity of the SiO2 
and TiO2 nanoparticles. 

2. RESULTS AND DISCUSSION 

2.1. Development of linear model for the training set 

For the SiO2 nanoparticles, the effects of three parameters (concentration, size, and exposure time), and 
for the TiO2 nanoparticles, that of two parameters (concentration and size) on the cytotoxicity have been 
reported in the literature [20, 21]. There is a good linear correlation between the cell viability and the 
concentration of SiO2 nanoparticles. Furthermore, the exposure time has a significant effect on cell viability in 
both the studied cases. The linear regression analysis of cytotoxicity versus the studied parameters confirms 
the mathematical relations among the parameters. The developed multiple linear regression models with the 
corresponding statistical parameters for SiO2 (the training data set) is (Model 1):  

Cell viability (%) = 122.118-0.188 × Concentration-1.261 × Time          (Eq. 1) 
N=30  R2=0.773 F=46.0  p<0.001  RMSE=12.55 

and for TiO2 (the training data set) is (Model 2):  

Cell viability (%) = 91.935 +0.002 × Concentration                                                                        (Eq. 2) 
N=14  R2=0.852 F=31.5  p<0.001  RMSE=2.56 

Size of nanoparticles has an important role in cell viability. In a previous study by Baharifar and Amani 
on chitosan/streptokinase nanoparticles, they showed that the most important factor in determining the 
particles' toxicity is size of nanoparticles [22]. However, size (in the studied range of nanoparticle size) has no 
significant statistically effect (p>0.1) on cell viability. The statistical parameters (after excluding the particle 
size of the nanoparticles) related to the linear regression models are the squared correlation coefficient (R2), 
the Fisher test statistic (F) that show the fit of a regression equation to the training set data and the 
corresponding probability values (p-value) [23], and the root mean square error (RMSE). In the developed 
linear regression models for both nanoparticles, the probability values (p-value) for each selected variable are 
less than 0.05. These verify the significant effect of the selected parameters (concentration and time of SiO2 
nanoparticles, and concentration of TiO2 nanoparticles) on the cytotoxicity of the nanoparticles for both case 
studies.  

2.2. Development of non-linear models for the training set 

Two ANN models with different hidden layers and transfer functions were identified as the best models 
for both data sets. Introducing particle size could provide improved statistical parameters for the developed 
model—i.e. Model 3 (Table 1). However, the external validation results (Figure 1 and 2) show that the 
established models (model 2) without the size of the nanoparticles have a prediction capability that is 
comparable to the model including this parameter.  

Table 1. Developed ANN models and the corresponding statistical parameters for training set of SiO2 and 
TiO2 nanoparticles. 

No.  Developed 
network 

No. Input 
Layer 

No. hidden 
Layer 1 

No. hidden 
Layer 2 

No. output 
Layer 

R2 RMSE 

SiO2 

2 RBFa 2 10 0 1 0.95 5.95 
3 MLPb 3 10 7 1 0.99 2.25 

TiO2 

2 MLP 1 5 0 1 0.92 1.91 

3 GRNNc 2 11 2 1 0.96 1.44 

aRadial-based function, bMultiple layer perceptron, cGeneralized regression neural network 
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Prediction of cytotoxicity nano-sized metal oxides by ANN has been reported in the literature. In a 

recent study by Fjodorova et al, the cytotoxicity prediction of metal oxide nanoparticles by ANN  was studied 

with χ-metal electronegativity (EN) by Pauling scale and composition of metal oxides [24]. Moreover, 

Baharifar and Amani in a study on cytotoxicity of albumin-loaded chitosan nanoparticles and modeling by 

ANN showed that concentrations of initial materials are the most important factors which may affect the cell 

viability [25]. 

In addition, SVM models were developed by the training sets, and the optimized and statistical 

parameters of the models have been listed in Table 2. However, evaluation of the prediction capability by test 

set was not acceptable (Figure 1 and 2). 

Table 2. Developed SVM model and the corresponding statistical parameters for training sets of SiO2 and 
TiO2 nanoparticles. 

No. C ɛ γ R2 RMSE 

SiO2 

4 126 0.1 0.01 0.75 13.2 

5 131 0.1 0.05 0.86 10.4 

6 36 0.1 0.1 0.86 10.3 

TiO2 

4 35 0.3 0.1 0.87 2.4 
5 36 0.1 0.5 0.97 1.2 
6 20 0.1 1 0.98 1.2 

C, ɛ and γ are parameters of SVM. 

 

Figure 1. R2 (correlation between experimental and calculated values) of training and test sets (top figure) 
and RMSE values (down figure) of developed linear and non-linear models for SiO2 nanoparticles (model 1 
is a linear model i.e. MLR, model 2-6  are non linear models (model 2, 3 :ANN and model 4, 5 and 6: SVM). 
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Figure 2. R2 (correlation between experimental and calculated values) of training and test sets (top figure) 
and RMSE values (down figure) of developed linear and non-linear models for TiO2 nanoparticles (model 
1 is a linear model i.e. MLR, model 2-6  are non linear models (model 2, 3 :ANN and model 4, 5 and 6: SVM). 

2.3. External validation and comparison between the developed linear and non-linear models 

External validation is a critical stage that should be examined to ensure the prediction capability of a 
model. The over-fitting and incapability of a model to predict external data is common in the development of 
non-linear models. The development of models and the evaluation of the statistical parameters for training 
models are not sufficient in modeling studies. In the predictive models, external validation is essential to 
ensure confidence in their predictability and generalizability [26, 27]. A necessary parameter to assign an 
external validation of the computational methods is R2. However, R2 is not enough to ensure the predictability 
of a model. Another method that is used to confirm the validity of the computational methods is the calculation 
and comparison of model errors (i.e. RMSE) for the training and test sets [28]. In this report, R2 and a 
comparison between the RMSE of the training and test values were employed as the appropriate statistical 
parameters to evaluate the predictability of all the models developed using linear and non-linear statistical 
methods. Figures 1 and 2 show the R2 and RMSE values of the established models for the training and test 
sets. The R2 of all the models for the test set of both nanoparticles were more than 0.6 (a critical criterion for 
the validity of a model), except for Models 5 and 6 for the TiO2 nanoparticles (over-fitting). Furthermore, the 
slightly significant differences between the RMSE of the training and test sets, especially in the ANN models, 
verify the validity of the developed models. These results indicate the best model for both nanoparticles 
obtained through ANN. The significant improvement in predictive capability exhibited by the ANN and SVM 
models confirms the importance of non-linear modeling in predicting the cytotoxicity of nanoparticles with 
different characteristics. Similiar studies confirm the importance of new statistical methods and sofware such 
as Monte Carlo technique [29] and CORAL [30], respectively, for prediction of cytotoxicity for metal oxide 
nanoparticles.  

3. CONCLUSION 

In this report, the applied linear and non-linear approaches to design the predictive models for cell 
viability (%) exposed to SiO2 and TiO2 nanoparticles, as well as their predictability and performance, were 
compared with each other. Based on the obtained results, it can be concluded that size has no significant effect 
on cell viability against the concentration and time of cell exposure. Also, non-linear modeling could be 
employed as a more appropriate method for predicting the cytotoxicity of nanoparticles. Moreover, external 
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validation is necessary to check the over-fitting problem and the selection of the appropriate parameters, 
especially in non-linear modeling. 

4. MATERIALS AND METHODS 

Data on the cell viability of cultured human embryonic kidney cells and cultured mouse macrophages 
measured by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay were taken from 
the literature [20, 21] and divided randomly into training (30 data for SiO2, 14 data for TiO2) and test sets (10 
data for SiO2, 7 data for TiO2) (Table 3 and Table 4).  

Table 3. Cell viability (%) of cultured human embryonic kidney cells exposed to SiO2 nanoparticles at 
various conditions reported data by Wang et al [20].  

Order Particle size (nm) Concentrations (mg/L) Exposure time (h) Cell viability (%) 

1* 20 25 0 (no exposure) 100.0 

2 20 50 0 (no exposure) 99.8 

3 20 100 0 (no exposure) 100.0 

4 20 200 0 (no exposure) 100.0 

5 20 25 12 101.7 

6* 20 50 12 98.4 

7 20 100 12 96.2 

8 20 200 12 95.9 

9 20 25 24 89.6 

10 20 50 24 70.2 

11* 20 100 24 34.7 

12 20 200 24 33.0 

13 20 25 36 78.3 

14 20 50 36 67.2 

15 20 100 36 34.0 

16* 20 200 36 27.1 

17* 20 25 48 75.0 

18 20 50 48 62.8 

19 20 100 48 26.7 

20 20 200 48 20.3 

21* 50 25 0 (no exposure) 100.0 

22 50 50 0 (no exposure) 100.0 

23 50 100 0 (no exposure) 100.1 

24 50 200 0 (no exposure) 99.9 

25 50 25 12 101.7 

26 50 50 12 102.1 

27 50 100 12 104.2 

28* 50 200 12 100.9 

29* 50 25 24 92.7 

30 50 50 24 74.6 

31 50 100 24 56.4 

32 50 200 24 39.8 

33 50 25 36 78.4 

34* 50 50 36 74.6 

35 50 100 36 56.1 

36 50 200 36 36.1 

37 50 25 48 71.1 

38 50 50 48 70.8 

39 50 100 48 53.0 

40* 50 200 48 26.7 

*Test set. 
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Table 4. Cell viability (%) of cultured mouse macrophages cells exposed to TiO2 nanoparticles at various 
conditions reported data by Zhang et al [21].  

Order Particle size  
(nm) 

Concentrations  
(mg/L) 

Cell viability  
(%) 

1 5 12.5 96.7 
2 5 25 94.2 
3* 5 50 90.9 
4 5 100 84.2 
5 5 200 81.7 
6 5 400 77.6 
7* 5 600 76.8 
8 25 12.5 91.8 
9 25 25 89.2 
10 25 50 86.7 
11* 25 100 81.8 
12* 25 200 78.4 
13 25 400 74.3 
14* 25 600 70.9 
15 100 12.5 93.4 
16 100 25 91.0 
17 100 50 89.2 
18* 100 100 85.1 
19 100 200 81.7 
20 100 400 78.4 
21* 100 600 77.2 

*Test set 

MLR, the most common form of linear regression analysis, is a statistical approach to model the 
relationship between activity and independent descriptors [6]. Moreover, a neural network was generated to 
make the non-linear relationship between input neurons (particle sizes, particle concentrations and cell 
exposure time) and output neurons (cytotoxicity) using various functions, including the generalized 
regression neural network (GRNN), the radial-based function (RBF), and the multiple-layer perceptron (MLP), 
along with different numbers of hidden neurons via the STATISTICA 7 software. The prediction of cell 
viability (%) of studied nanoparticles was assessed by another non-linear model, namely SVM. Capacity 
parameter (C), ɛ and γ are parameters of SVM which optimized. C is a regularization parameter that adjusts 
maximizing, the distance from the hyperplane to training set data points and ɛ is related to noise in the data 
[11, 12]. They were optimized by cross-validation method using STATISTICA 7 software.  

The statistical parameters of the training set—i.e. the coefficient of determination between the 
experimental and prediction data (R2) and the root mean square error (RMSE)  calculated as: 

  
2

2

2

(exprimental - calculated )
R =1- 

(exprimental - mean of expri

value value

value valmental ue)




                                                            (Eq. 3) 
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Square error  SE experimental value –  calculated v
RMS

al
=

N
E

ue

N


                                        (Eq. 4) 

The development of models and evaluation of the statistical parameters for the training model are not 
sufficient in modeling studies. In the predictive models, external validation is essential for the confidence of 

their predictability and generalizability [26, 27]. Therefore, the validity of the developed model was checked 

by the test set. 
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