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INTRODUCTION
Etodolac (R,S) 2-[1,8-diethyl-1,3,4-tetrahydropy-
rano (3,4-b)indole-1-yl]acetic acid is a nonsteroi-
dal antiinflammatory agent with analgesic and 
antipyretic properties. Etodolac has inhibitory 
effect on cyclooxygenase-2 (COX-2) activation 
(1). It is used in the treatment of osteoarthritis, 
rheumatoid arthritis, ankylosing spondylitis, and 
other rheumatic disorders. Its pharmacological 
activities are related to inhibition of prostaglan-
din biosynthesis at the site of inflammation and 
pain. Etodolac has pyrano[3,4-b]indole basic 
skeleton. In recent studies, compounds, contain-
ing the pyrano[3,4-b]indole scaffold have been 
reported to exhibit anti-hepatitis C virus NS5B 
polymerase activity (2,3). The hepatitis C virus 
(HCV) is a significant global human pathogen. 
The HCV NS5B RNAdependent RNA polymer-
ase (RdRp) is crucial for replicating the viral 

RNA genome and a promising target for new ap-
proaches towards treatment of hepatitis C, be-
cause the liver cell does not contain any protein 
with a similar activity. 

Gopalsamy et al. previously reported 1,3,4,9-tet-
rahydropyrano [3,4-b] indole derivatives as po-
tent and selective HCV NS5B inhibitors (4). Since 
etodolac contain 1,3,4-tetrahydropyrano[3,4-b]
indole tricyclic heterocyclic scaffold similar to 
that present in Gopalsamy’s compounds (4), we 
decided to explore thiosemicarbazide derivatives 
of etodolac as potential anti-NS5B agents. The 
thiosemicarbazide modification at the carboxyl 
center of etodolac was chosen based on its ability 
to generate a valuable building block for the syn-
thesis of five-membered heterocycles. Therefore, 
the thiosemicarbazide is a highly efficient phar-
macophore in molecular design. On the other 
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hand, various derivatives of thiosemicarbazide have been re-
ported to possess interesting biological activities such as anti-
microbial (5-8), anticonvulsant (9), antibacterial (10-12), anti-
fungal (13-17), anti-inflammatory (18,19) antiviral (20) and 
anticancer activities (21-24). In this study, we have explored 
the therapeutic potential of the thiosemicarbazide scaffold 
against HCV NS5B. The inhibitory potency of thiosemicar-
bazide against HCV replicase has not been examined to-date.

In continuation of our interest in the chemical and biological 
properties of etodolac derivatives as well as based on our pre-
vious studies on the synthesis of biologically active etodolac 
hydrazide derivatives, namely 2-(1,8-diethyl-1,3,4,9-
tetrahydropyrano[3,4-b]indole-1-yl)acetohydrazide [2] and a 
novel series of new etodolac hydrazide derivatives; 2-(1,8-die-
thyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-yl) acetic acid[(5-
nitro-2-furyl/substitutedphenyl)methylene]hydrazides and 
3-(2-(1,8-diethyl-1,3,4,9-tetrahydropyrano [3,4-b]indole-1-yl)
acetylhydrazono)-2-alkyl/aryl-4-thiazolidinones [25], we pre-
sent in this work novel etodolac thiosemicarbazide derivatives 
(3a-h) and investigation of their HCV NS5B polymerase in-
hibitory activity. The characterization of these compounds 
were identified with the help of elemental analysis, UV, FT-IR, 
1H-NMR, 13C-NMR and LC-MS spectral data while their puri-
ties were analyzed by thin layer chromatography (TLC).

EXPERIMENTAL
Chemistry
All chemicals were purchased from Merck, Sigma-Aldrich or 
Fluka. Reactions were monitored by TLC on silicagel plates 
purchased from Merck. Melting points of the synthesized 
compounds were determined in Schmelzpunktgerät SMP II 
melting point apparatus and uncorrected. Purity of the com-
pounds was checked TLC plates precoated with silica gel G 
using solvent systems M1, petroleum ether: ethyl acetate 
(30:70, v/v); M2, petroleum ether: ethyl acetate (60:40, v/v); 
M3, petroleum ether: ethyl acetate (40:60, v/v); M4, petroleum 
ether: ethyl acetate (70:30, v/v). The spots were located under 
UV light (254 nm) (t=21°C). Elemental analyses were per-
formed on a VarioMICRO V1.5.7. instrument. FT-IR spectra 
were recorded on Shimadzu FTIR-8400S spectrophotometer. 
1H-NMR spectra were recorded on Bruker AVANCE-DPX 400 
(400 MHz) NMR spectrometers using          DMSO-d6 as sol-
vent. Chemical shifts () were reported in parts per million 
(ppm). Data a reported as follows: chemical shift, multiplicity 
(b.s.: broad singlet, d: doublet, m: multiplet, s: singlet and 
t:triplet), coupling constants (Hz), integration. Mass spectra 
(MS) were determined on a Agilent 1100 LC-MS mass spec-
trometer.

Preparation of methyl (1,8-diethyl-1,3,4,9-tetrahydropyrano 
[3,4-b] indole-1-yl) acetate 1 and 2- (1,8-Diethyl-1,3,4,9-
tetrahydropyrano [3,4-b] indole-1-yl)acetohydrazide 2

Etodolac (0.01 mol) and methanol (16 mL) were refluxed for 3 
h in a few drops of concentrated sulfuric acid. The contents of 
the flask were subsequently cooled and neutralized by using 
NaHCO3 (5%). The resulting precipitate was filtered, dried 
and recrystallized twice from ethanol to obtain compound 1.

Methanolic solution of compound 1 (0.01 mol) and hydrazine-
hydrate (80%, 7 mL) were refluxed for 3h. The reaction mix-
ture was then cooled, diluted with water and allowed to stand 

overnight. The precipitated solid was washed with water, 
dried and recrystallized twice from petroleum ether to give 
compound 2. m.p. 186-188 °C. (m.p 185-187 °C in ref 25).

General procedure for the synthesis of 1-[2-(1,8-diethyl-
1,3,4,9-tetrahydropyrano[3,4-b]indole-1-yl)acetyl]-4-alkyl/
aryl thiosemicarbazides [3a-h]

A solution of 0.01 mol of compound 2 and equimolar amount 
of appropriate isothiocyanate in 20 mL of ethanol was heated 
under reflux for 2 h. The precipitate obtained was filtered-off, 
washed with water, followed by two washings with boiling 
ethanol.

1-[2-(1,8-Diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-yl)
acetyl]-4-methyl  thiosemicarbazide, 3a

White solid. Yield 60%, m.p. 208-211°C. Rf x100: 76.9 (M1). IR 
(vmax cm-1): 3343,3215 (indole and thiosemicarbazide NH), 
1674 (C=O), 1198 (C=S). 1H NMR (400 MHz,      DMSO-d6)  
ppm: 0.65 (t, 3H, -CH2-CH3 at C1); 1.26 (t, 3H,-CH2-CH3, at C8); 
1.87- 2.04 (m, 2H, -CH2-CH3 at C1); 2.66-2.88 (m, 9H, -CH2-CO-
NH at C1, -CH2-CH3 at C8,  -CH2 at C4 and NH-CH3); 3.97-4.00 
(m, 2H, -CH2 at C3); 6.88-7.26 (m, 3H, Ar-H); 7.34 (b.s, 1H, N4-
H); 9.35 (s, 1H, indole N-H); 9.58 (s, 1H, N2-H); 10.48 (s, 1H, 
N1-H). 13C NMR (100 MHz, DMSO-d6/TMS) δ ppm: 8.33 (C-
12); 14.98 (C-10); 22.43 (C-9); 24.35 (C-4); 31.20 (C-11); 31.79 
(NH-CH3); 43.07 (C-13); 61.06 (C-3); 76.57 (C-1); 108.21 (C-4a); 
116.64 (C-6); 119.99 (C-5); 120.95 (C-7); 127.22 (C-5a); 127.84 (C-
8); 135.79 (C-1a); 137.44 (C-8a); 170.21 (C=O); 183.79 (C=S). 
Analysis for C19H26N4O2S.1/2 H2O (383.527). Calcd: C, 60.94; 
H, 7.00; N, 14.96; S, 8.56%. Found: C, 59.50; H, 7.09; N, 14.60; S, 
8.36%.

1-[2-(1,8-Diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-yl)
acetyl]-4-ethyl thiosemicarbazide, 3b

White solid. Yield 82%, m.p. 215°C. Rf x 100: 44 (M2). IR (vmax, 
cm-1): 3377, 3308 (indole and thiosemicarbazide NH), 1674 
(C=O), 1217 (C=S). 1H NMR (400 MHz, DMSO-d6)  ppm: 0.62 
(t, 3H, -CH2-CH3 at C1); 1.02-1.08 (m, 3H, -CH2-CH3 at C8); 1.26 
(t, 3H, NH-CH2-CH3); 2.02-2.06 (m, 2H, -CH2-CH3 at C1); 2.66-
2.87 (m, 6H, -CH2-CH3 at C8, -CH2-CO-NH at C1 and -CH2 at 
C4), 2.95-3.56 (m, 2H, NH-CH2-CH3); 3.99-4.02 (m, 2H, -CH2 at 
C3), 6.89-7.26 (m, 3H, Ar-H), 7.31 (b.s, 1H, N4-H), 9.35 (s, 1H,  
indole N-H), 9.65 (s, 1H, N2-H), 10.51 (s, 1H, N1-H). 13C NMR 
(100 MHz, DMSO-d6/TMS) δ ppm: 8.26 (C-12); 14.67 (NH-
CH2-CH3); 14.91 (C-10); 22.28 (C-9); 24.52 (C-4); 30.93 (C-11); 
42.70 (C-13); 51.84 (NH-CH2-CH3); 60.81 (C-3); 76.32  (C-1); 
107.61 (C-4a); 115.94 (C-6); 119.30 (C-5); 120.26 (C-7); 126.37 (C-
5a); 127.09 (C-8); 134.97 (C-1a); 136.35 (C-8a); 168.95 (C=O); 
170.52 (C=S). MS-API-ES, m/z (%): 389.1 ([M+]+1 6.4); 388.1 
(([M+], 21.4); 387.1 (100); 267.6 (2.9); 225.4 (1.8); 169.2 (2.7). 
Analysis for C20H28N4O2S (388.527). Calcd: C, 61.83; H, 7.26; 
N, 14.42; S, 8.25%. Found: C, 61.73; H, 7.00; N, 13.94; S, 7.65%.

1-[2-(1,8-Diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-yl)
acetyl]-4-propyl     thiosemicarbazide, 3c

White solid. Yield 84%, m.p. 225°C. Rf x 100: 32.26 (M3). IR 
(vmax, cm-1): 3289 (indole and thiosemicarbazide NH), 1674 
(C=O), 1211 (C=S). 1H NMR (400 MHz, DMSO-d6)  ppm: 0.61 
(t, 3H, -CH2-CH3 at C1);  0.83 (t, 3H, -CH2-CH3 at C8); 1.25 (t, 
3H, NH-CH2-CH2-CH3); 1.44-1.47 (m, 2H, -CH2-CH3 at C1); 
1.94-2.04 (m, 2H, NH-CH2-CH2-CH3); 2.66-2.87 (m, 6H, -CH2-
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CONH at C1, -CH2-CH3 at C8 and -CH2 at C4); 3.17-3.38 (m, 
2H, NH-CH2-CH2-CH3); 3.92-4.00 (m, 2H,–CH2 at C3); 6.88-
7.26 (m, 3H, Ar-H); 7.27 (b.s, 1H, N4-H); 9.38 (s, 1H, indole 
N-H); 9.69 (s, 1H, N2-H); 10.53 (s, 1H, N1-H). Analysis for 
C21H30N4O2S (402.554). Calcd: C, 62.66; H, 7.51; N, 13.92; S, 
7.97%. Found: C, 62.91; H, 7.38; N, 13.80; S, 7.98%.

1-[2-(1,8-Diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-yl)
acetyl]-4-butyl thiosemicarbazide, 3d

White solid. Yield 71%, m.p. 180-181°C. Rf x 100: 32.26 (M3).IR 
(vmax, cm-1): 3331, 3215 (indole and thiosemicarbazide NH); 
1674 (C=O); 1205 (C=S). 1H NMR (400 MHz, DMSO-d6)  ppm: 
0.61 (t, 3H, -CH2-CH3 at C1);  0.87 (t, 3H, -CH2-CH3 at C8); 1.24-
1.29 (m, 5H, NH-CH2-CH2-CH2-CH3 and -CH2-CH3 at C1); 
1.39-1.43 (m, 2H, NH-CH2-CH2-CH2-CH3); 1.93-2.04 (m, 2H, 
NH-CH2-CH2-CH2-CH3); 2.68-3.53 (m, 8H, -CH2-CH3 at C8, 
-CH2-CONH at C1, -CH2 at C4 and NH-CH2-CH2-CH2-CH3); 
3.90-4.01 (m, 2H,–CH2 at C3); 6.89-7.25 (m, 3H, Ar-H); 7.26 (b.s, 
1H,N4-H); 9.37 (s, 1H, indole N-H); 9.68 (s, 1H, N2-H); 10.52 (s, 
1H, N1-H). Analysis for C22H32N4O2S (416.580). Calcd: C, 
63.43; H, 7.74; N, 13.45; S, 7.70%. Found: C, 63.91; H, 7.58; N, 
13.49; S, 7.29%.

1-[2-(1,8-Diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-yl)
acetyl]-4-allyl thiosemicarbazide, 3e

White solid. Yield 72%, m.p. 213°C. Rf x 100: 33.87 (M3). IR 
(vmax, cm-1): 3287 (indole and thiosemicarbazide NH); 1674 
(C=O); 1211 (C=S). 1H NMR (400 MHz, DMSO-d6)  ppm: 0.62 
(t, 3H, -CH2-CH3 at C1); 1.25 (t, 3H, CH2-CH3 at C8); 1.96-2.03 
(m, 2H,-CH2-CH3 at C1); 2.65-2.69 (m, 2H, -CH2-CH3 at C8); 
2.74-2.87 (m, 4H, -CH2-CONH at C1 and–CH2 at C4); 3.98-4.18 
(m, 4H, NH-CH2-CH=CH2 and -CH2 at C3); 5.04-5.07 (d, 1H, 
NH-CH2-CH=CH2, J=10.3 Hz, cis); 5.12-5.17 (d, 1H, NH-CH2-
CH=CH2, J=17.2 Hz, trans); 5.72- 5.87 (m, 1H, NH-CH2-
CH=CH2); 6.88-7.25 (m, 3H, Ar-H); 7.50 (b.s, 1H, N4-H); 9.49  
(s, 1H, indole N-H); 9.72 (s, 1H, N2-H); 10.51 (s, 1H, N1-H) . 
Analysis for C21H28N4O2S (400.580). Calcd: C, 62.97; H, 7.05; 
N, 13.99; S, 8.01%. Found: C, 63.08; H, 6.87; N, 13.97; S, 8.09%.

1-[2-(1,8-Diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-yl)
acetyl]-4-benzyl thiosemicarbazide, 3f

Light cream solid. Yield 83%, m.p. 148-150°C. Rf x 100: 37.50  
(M1). IR (vmax, cm-1): 3330, 3233  (indole and thiosemicarbazide 
NH); 1675 (C=O); 1188 (C=S). 1H NMR (400 MHz, DMSO-d6)  
 ppm: 0.54 (t, 3H, -CH2-CH3 at C1);  1.24 (t, 3H, -CH2-CH3 at 
C8); 1.92-2.00 (m, 2H, -CH2-CH3 at C1); 2.53-2.58 (m, 2H, -CH2-
CH3 at C8); 2.73-2.85 (m, 4H, -CH2-CONH at and –CH2 at C4); 
3.73-3.84 (m, 2H, NH-CH2-); 4.65-4.73 (m, 2H,–CH2 at C3); 6.87-
7.33 (m, 8H, Ar-H); 7.85 (b.s, 1H, N4-H); 9.56 (s, 1H, indole 
N-H); 9.76 (s, 1H, N2-H);  10.49 (s, 1H, N1-H). Analysis for 
C25H30N4O2S (450.596). Calcd: C, 66.64; H, 6.71; N, 12.43; S, 
7.12%. Found: C, 65.87; H, 6.67; N, 11.98; S, 7.63%.

1-[2-(1,8-Diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-yl)
acetyl]-4-phenyl thiosemicarbazide, 3g

Light yellow solid. Yield 97%, m.p. 164°C. Rf x 100: 23.81  (M1).  
IR (vmax, cm-1): 3339, 3283 (indole and thiosemicarbazide NH); 
1688 (C=O); 1211 (C=S). 1H NMR (400 MHz, DMSO-d6)  ppm: 
0.62 (t, 3H, -CH2-CH3 at C1); 1.26 (t, 3H, -CH2-CH3 at C8); 2.05-
2.08 (m, 2H, -CH2-CH3 at C1); 2.65-2.69 (m, 2H, -CH2-CH3 at 
C8); 2.80-3.42 (m, 4H, -CH2-CONH at and –CH2 at C4); 3.99-

4.02 (m, 2H, –CH2 at C3); 6.88-7.53 (m, 8H, Ar-H); 9.08 (b.s, 1H, 
N4-H); 9.84 (s, 1H, indole N-H); 9.96 (s, 1H, N2-H); 10.52 (s, 1H, 
N1-H). Analysis for C24H28N4O2S (436.570). Calcd: C, 66.03; H, 
6.46; N, 12.83; S, 7.34%. Found: C, 65.53; H, 6.21; N, 12.34; S, 
7.00%.

1-[2-(1,8-Diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-yl)
acetyl]-4-cyclohexyl thiosemicarbazide, 3h

White solid. Yield 63%, m.p. 205°C. Rf x 100: 46.43  (M4).  IR 
(vmax, cm-1): 3275 (indole and thiosemicarbazide NH); 1676  
(C=O); 1213 (C=S). 1H NMR (400 MHz, DMSO-d6)  ppm: 0.58 
(t, 3H, -CH2-CH3 at C1);  1.06-1.16 (m, 3H, -CH2-CH3 at C8); 
1.23-2.05 (m, 13H, -CH2-CH3 at C1 and C6H11); 2.68-2.87 (m, 
6H, -CH2-CH3 at C8, -CH2-CONH at C1 and –CH2 at C4); 3.92-
4.06 (m, 2H,–CH2 at C3); 6.88-7.26 (m, 3H, Ar-H); 7.03 (b.s, 1H, 
N4-H); 9.41 (s, 1H, indole N-H); 9.75 (s, 1H,  N2-H); 10.55 (s, 
1H, N1-H). Analysis for C24H34N4O2S (442.617). Calcd: C, 
65.13; H, 7.74; N, 12.66; S, 7.24%. Found: C, 65.38; H, 7.63; N, 
12.59; S, 7.69%.

Biological activity
HCV NS5B polymerase inhibitory activity
All synthesized compounds were evaluated for inhibition of 
hepatitis C virus NS5B RNA dependent RNA polymerase ac-
tivity in primer dependent elongation assays as previously 
described. The biological activity of the compounds against 
NS5B polymerase were evaluated in a reaction buffer contain-
ing 20 mM Tris-HCl (pH 7.0), 100 mM NaCl, 100 mM sodium 
glutamate, 0.1 mM DTT, 0.01% BSA, 0.01% Tween-20, 5% glyc-
erol, 20 U/mL of RNase Out, 0.25 μM of poly rA/U12, 25 μM 
UTP, 2 μCi [∞-32P]UTP, 300 ng of NS5BCΔ21 and 1.0 mM 
MnCl2 with or without inhibitors (100 μM) in a total volume of 
25 μl for 1h at 30oC as previously described (26-28). Reactions 
were terminated by the addition of ice-cold 5% (v/v) trichloro-
acetic acid (TCA) containing 0.5 mM pyrophosphate. Reaction 
products were precipitated on GF-B filters and quantified on a 
liquid scintillation counter. NS5B activity in the presence of 
DMSO control was set at 100% and that in the presence of the 
compounds was determined relative to this control.

Molecular modeling
Ligand structure preparation
Etodolac derivatives 3a, 3d and 3e were built using the frag-
ment dictionary of Maestro 9.0 and energy minimized by Mac-
romodel program v9.7 (Schrödinger, Inc., New York, NY, 
2009) using the OPLSAA force field with the steepest descent 
followed by truncated Newton conjugate gradient protocol. 
The low-energy 3D structures of etodolac derivatives were 
generated with the following parameters present in LigPrep 
v2.3: different protonation states at physiological pH, all pos-
sible tautomers, ring conformations and stereoisomers.  The 
output obtained from the LigPrep run was used as input for 
docking simulations.

Protein structure preparation
The X-ray co-crystal structure of HCV NS5B-PF868554 (PDB 
ID: 3FRZ) obtained from the RCSB Protein Data Bank was 
used for docking into thumb pocket-II (29). The protein struc-
ture was refined by means of default parameters mentioned in 
Protein Preparation Tool present in Maestro v9.0 and Impact 
program v5.5 (Schrödinger, Inc., New York, NY, 2009), in 
which the protonation states of residues were adjusted to the 
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dominant ionic forms at pH 7.4.  Refined HCV NS5B structure 
was further used to generate energy grid by selecting bound 
inhibitor (PF868554) as reference ligand.

Docking protocol
The Ligprep file containing etodolac derivatives was docked at 
the TP-II of NS5B using the “Standard Precision” (SP) Glide 
docking program v5.0 (Schrödinger, Inc., New York, NY,  2009) 
and the default parameters.  The top scoring pose of 3e within 
the TP-II was used for graphical analysis.  All computations 
were carried out on a Dell Precision 470n dual processor with 
the Linux OS (Red Hat Enterprise WS 4.0).

RESULTS AND DISCUSSION
Synthesis of Etodolac thiosemicarbazides 
Etodolac (R,S) 2-[1,8-diethyl-1,3,4-tetrahydropyrano(3,4-b)in-
dole-1-yl]acetic acid was chosen as the starting compound to 
design several novel thiosemicarbazides. Methyl 2-(1,8-dieth-
yl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-yl)acetate 1 was 
prepared by the reaction of etodolac and methanol in the pres-
ence of a few drops of concentrated sulfuric acid. The reaction 
of compound 1 with hydrazine-hydrate in methanol resulted 
in 2-(1,8-diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-yl)
acetohydrazide 2. We synthesized compound 1 (SGK196) and 
compound 2 (SGK197) in previous study (25). Compound 2 
and alkyl/aryl isothiocyanates were heated in ethanol to yield 
new 1-[2-(1,8-diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-
1-yl)acetyl]-4-alkyl/aryl thiosemicarbazides [3a-h]. Synthetic 
route to etodolac thiosemicarbazides is shown in Scheme 1. 

Purification of the synthesized compounds in this study was 
confirmed by thin layer chromatography. The structures of 
compounds derived from etodolac, were identified with the 
help of FT-IR, 1H-NMR, 13C-NMR and LC-MS spectral data, 
besides elementel analysis.

Etodolac thiosemicarbazides were characterized by IR spectra 
with C=O band at 1674–1688 cm–1 and C=S band at 1188–1217 
cm–1  (20, 30-32). The UV data of selected prototype 3a was ex-
hibited characteristic K bands arising from chromophoric C=S 
group at 244 nm (20). 1H-NMR data was also in agreement with 
the formation of thiosemicarbazides. In the 1H-NMR spectra, all 
protons were seen accordingly to the expected chemical shift 
and integral values. For the thiosemicarbazides, the signals of 
the proton linked to N1-N2 and N4 nitrogens were shown at 
10.48-10.55, 9.58-9.96 and 7.03-9.08 ppm, respectively. In addi-
tion, NH protons of compound 3b was observed to exchange 
with D2O in the spectrum. In the 1H NMR spectra, all protons 
were seen accordingto the expected chemical shifts and integra-
tion values (7, 11, 33-35.). In the 13C-NMR spectra of selected 
prototype compounds 3a and 3b, thiosemicarbazide C=O gave 
170.21 and 168.95 ppm, respectively. The peaks resonated at 
183.79 and 170.52 ppm in the 13C-NMR spectrum of these com-
pounds, assigned for C=S, confirming thione form of thiosemi-
carbazides (36,37). The 13C-NMR spectra of the compounds dis-
played the appropriate number of resonances that exactly as-
sembled the number of carbon atoms.

SCHEME 1. Synthetic route of compounds 3a-h.
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The MS-API-ES of the selected compound 3b displayed mo-
lecular ion at m/z 388 which confirmed its molecular weight. 
The major fragmentation pattern involved the cleavage of the 
CONH-NH-CS bonds of amide moiety (32, 38). Fragmentation 
pattern for the representative compound 3b which is given in 
Scheme 3 also supported the expected structure.

Biological Activity
The ability of the compounds to inhibit HCV NS5B RdRp ac-
tivity was investigated in vitro by polyrA-U12 extrension as-
says described in experimental section (28). The compounds 
3a-h were reconstituted in DMSO as 10 mM stocks, and seri-
ally diluted in DMSO to obtain working stocks. 

Preliminary screening was carried out at 100 μM to identify a 
wider range of compounds. Percentage inhibition of HCV NS5B 
RdRp activity was determined at 0.1 mM concentration of the 
indicated compounds and represents an average of at least two 
independent measurements in duplicate. NS5B RdRp activity in 
the absence of the inhibitor was taken as 100 percent after sub-
traction of residual background activity. The concentration of 
DMSO in all reactions was kept constant at 5%.

The compounds exhibited inhibition of NS5B RdRp activity rang-
ing from ~23.4% to 76.2% at 100 μM concentration (Table 1). The 
IC50 values of compounds exhibiting ≥50% inhibition at 0.1 mM 
concentration were determined from dose-response curves using 

SCHEME 2. 13C-NMR spectral data of compounds 3a and 3b.
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8-10 concentrations of each compound in duplicate in two inde-
pendent experiments. Curves were fitted to data points using 
nonlinear regression analysis and IC50 values were interpolated 
from the resulting curves using GraphPad Prism 3.03 software. 
Wedelolactone (IC50=36.1 μM), a previously characterized NS5B 
inhibitor, was included as an internal reference standard.

TABLE 1. Anti-HCV NS5B RdRp Activity of Compounds 3a-h

Comp. Lab. Code
% Inhibition

(100 μM) IC50 (μM)

3a SGK 224 76.2±0.5 18.7±1.2

3b SGK 225 49.9±0.3

3c SGK 226 34.6±1.1

3d SGK 227 68.7±0.9 29.2±1.4

3e SGK 229 78.6±2.1 16.8±1.2

3f SGK 228 23.4±1.8

3g SGK 230 38.9±0.9

3h SGK-313 47.4±0.9

Etodolac, the parent molecule, included in this investigation 
for comparison with its derivatives, exhibited the lowest activ-
ity against NS5B of ~10%. Among these, the most active thio-
semicarbazide compounds were 3a (SGK 224), 3d (SGK 227) 
and 3e (SGK 229) with IC50 values of 18.7 μM, 29.2 μM and 
16.8 μM, respectively. 

To understand the probable molecular mechanism of etodolac 
derivatives in interfering with NS5B polymerase activity, we 
have performed molecular docking study using Glide docking 
software. Since the structurally related pyranoindoles have 
been previously shown to inhibit NS5B activity through bind-
ing to TP-II, we performed docking calculations at TP-II site (3, 
39). Analysis of the binding energy data for the docked confor-
mations of R- versus S-isomers of compounds 3a, 3d and 3e 
showed that R-isomers bind favorably as compared to their S-
counterparts. For example, compounds 3a (Glidescore for R = 
-5.65 kcal/mol and for S = -5.48 kcal/mol), 3d (Glidescore for 
R = -6.44 kcal/mol and for S = -5.65 kcal/mol) and 3e (Glides-
core for R = -6.71 kcal/mol and for S = -6.62 kcal/mol).

The binding mode of (R)-isomer of the etodolac derivative 3e 
within the TP-II of HCV NS5B polymerase is shown in Scheme 
4. The ethyl substituent on indole nucleus forms hydrophobic 
interactions with the side chains of Ile482, Val485 and Leu489. 
The indole nucleus is stabilized by hydrophobic interactions 
with the side chains of Leu419, Met423, Tyr477, Ile482, and 
Leu497.  The indole ring –NH forms hydrogen bonding inter-
action with the S atom of Met423 (NH---S-Met423, 2.3 Å). The 
ethyloxepine moiety is mainly stabilized by hydrophobic con-
tacts with the side chain of Tyr477 and Trp528. The carbonyl 
oxygen atom of the thiosemicarbazide group forms electro-
static interaction with the backbone –NH of Ser476 (C=O---

SCHEME 4. Glide-SP predicted binding model of compound (R)-3e (SGK229) within the TP-II of HCV NS5B polymerase
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HN-Ser476, 3.5 Å). One of the –NH group of thiosemicarbazide 
function may enter into electrostatic interaction with the back-
bone of Trp528 (-NH---O=C-Trp528, 3.6 Å). The C=S group is 
stabilized by electrostatic contact with the side chain amide 
group of Asn527 –C=S---H2N-Asn527, 3.5 Å). The terminal al-
lyl group is stabilized by hydrophobic and pi-pi interactions 
with Ala376 and His475, respectively.   

Amino acid residues are shown as stick model with the atoms 
colored as carbon – green, hydrogen – white, nitrogen – blue 
and oxygen – red whereas inhibitor is shown as ball and stick 
model with the same color scheme as above except carbon at-
oms are represented in orange. Dotted red line indicates hy-
drogen bonding interaction whereas dotted cyan line indicates 
potential electrostatic contact with distances in Å.

CONCLUSION
In this study, a series of novel etodolac thiosemicarbazide de-
rivatives were synthesized and evaluated for inhibition of 

hepatitis C virus NS5B RNA dependent RNA polymerase ac-
tivity. The etodolac thiosemicarbazides; 3a (IC50: 18.7 μM), 3d 
(IC50: 29.2 μM) and 3e (IC50: 16.8 μM) are the most potent com-
pounds. Molecular docking and binding mode investigations 
also suggest that thiosemicarbazide scaffold may be optimized 
for generating new analogues with improved anti-NS5B po-
tency. Based on these studies, we are now in the process of 
synthesizing modified analogues in order to generate more 
effective hepatitis C virus NS5B RNA dependent RNA poly-
merase inhibitors. 
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