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ABSTRACT: Hepatocellular carcinoma (HCC) is the third most common cancer-related death worldwide, 
including in Indonesia. However, to date, there is still no effective treatment. As immunotherapy has gained 
more attention, this study aims to develop a peptide vaccine derived from GPC3. NetCTLPan1.1 and 
NetMHCPan were utilized to discover GPC3 based CTL and HTL epitopes, respectively. The peptide 
sequence was analyzed for its immunogenicity, IFNγ inducing capabilities, and population coverage; six-
strong peptide candidates were chosen to create the vaccine. The 3D structure of the peptide vaccine was 
predicted using RaptorX, refined using GalaxyWEB, and then evaluated for the Ramachandran favored 
score using SwissProt Expasy before being docked. A peptide vaccine of GPC3-derived peptide was 
constructed and proven to have potent immunogenicity, antigenicity, and population coverage. Docking 
results using the 3D structure against different HLA alleles reveal promising interactions, thus predicted to 
be able to induce T cell response. The peptide vaccine is highly potential as an alternative treatment for 
HCC, but further in vitro and in vivo studies should be performed to confirm these findings. 
KEYWORDS: Hepatocellular carcinoma; vaccine; Indonesia; glypican-3; in silico. 

 1. INTRODUCTION 

Over the past few years, the growing incidence of liver cancer has been a global concern. Liver cancer 
is currently the sixth most common cancer and the third most frequent cause of cancer-related deaths 
worldwide, with around 905,000 new cases and 830,000 deaths in 2020 [1]. Cancer that arises from liver cells 
is classified into different types, but hepatocellular carcinoma or HCC is the most commonly found primary 
liver malignancy. HCC is mainly caused by viral infections such as Hepatitis B (HBV) and Hepatitis C (HCV). 
HBV leads to HCC via a direct mechanism by synthesizing an oncovirus protein called HBx, and an indirect 
mechanism by inducing injury to the liver [2]. Meanwhile, HCV mostly leads to liver injury followed by 
cirrhosis and the development of liver cancer [2]. The second most common etiology is mycotoxin as secondary 
metabolites produced by fungi. An example of mycotoxin is aflatoxin B1 by Aspergillus flavus, a DNA 
intercalating factor that further leads to mutation and carcinogenesis [3]. In addition, lifestyle factors including 
diet, obesity, alcohol abuse, and smoking also contribute to HCC [4-5]. 

Currently, the major modalities used to detect HCC are utilization serum alpha-fetoprotein (AFP) as a 
biomarker, diagnostic imaging with either PET (Positron emission tomography) scan or CT (computerized 
tomography) scan, ultrasound, and magnetic resonance imaging (MRI) [6].  Unfortunately, despite the various 
means to diagnose HCC, most patients experience diagnostic delays either due to providers failing to identify 
positive tests, insensitive diagnostic tests, or patients missing surveillance appointments [6-7]. In conjunction 
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with diagnostic delay is poor HCC prognosis; even delays for three months allow significant tumor growth, 
lowering the possibility of effective treatment alternatives [7]. 

Hepatitis B vaccination and blood donor screening are both effective primary preventive strategies. The 
impact of the mass immunization campaign on HBV-related HCC in young people will be evident shortly, 
with an estimated 80% reduction in HCC in adults in three to four decades [8]. Apart from that, HCC also has 
various types of treatment, which vary depending on the staging of the disease and associated comorbidities. 
There are five main treatments of HCC, including surgical removal, percutaneous ablation, radiofrequency 
ablation, various embolization such as transarterial chemoembolization (TACE), and radioembolization [9].  
Each type of treatment has its advantages, side effects, and challenges. For instance, problems such as 
recurrence and metastasis of the disease may still be encountered in surgical resection and liver 
transplantation treatment. Besides that, there is also a limited number of donors for liver transplantation, 
which adds another challenge for this type of treatment [10]. Meanwhile, chemoembolization treatment has a 
risk of bleeding or infection of the blood vessels [11]. Apart from that, there are also some significant 
complications after percutaneous ablation treatment, such as hemorrhage, liver failure, portal vein thrombosis, 
etc. [12]. Lastly, molecular therapies still have some challenges in developing biomarkers that can predict a 
patient's response [13].  

Immunotherapy is a popular approach to tackle this problem. Among immunotherapies is the peptide 
vaccine, which applies a short peptide sequence that can activate the immune system to target cancer cells. 
Many peptide vaccines derived from neoantigen have been developed, and the clinical trials have shown 
mixed results. However, neoantigen derived from the mutated gene, thus rarely detected in HLA from HCC 
and other types of cancer with low or intermediate mutation burden. This makes targeting neoantigen more 
suitable as personalized medicine instead of a wider population [14]. 

It is known that tumor cells express the same tumor-associated antigen (TAAs). A short 9-mer to 15-
mer peptide sequence from the TAA is able to induce immunological response [15]. Based on this principle, 
scientists are drawn to target the TAAs by using peptide vaccines. The peptide vaccine will be processed by 
MHC class I and MHC class II molecules of professional antigen-presenting cell (APC), thus inducing CD8+ 
and CD4+ T cell response against the tumor cells. Moreover, unlike neoantigen peptide vaccines, TAAs 
expression profiles are primarily similar across the same type of cancer, in this case, HCC. Thus, the probability 
of the peptide sequence to be recognized by immune cells is bigger [14].  

Hence, the proposed vaccine utilized a very well-known tumor-specific antigen, Glypican-3 (GPC3). It 
is an oncofetal HCC antigen that belongs to a family of cell surface heparan sulfate proteoglycans bound to 
the cell membrane by a glycosyl-phosphatidylinositol anchor. It is highly expressed during embryogenesis 
and organ development [16] but not in the adult liver [17]. However, a study by Wu, et al. [18] found that 
GPC3 is overexpressed in HCC patients and is associated with poor prognosis in HCC patients. Moreover, 
GPC3 has been found to promote the growth of HCC by activating the canonical pathway of WNT [19]. The 
normal WNT signaling pathway starts with the binding of WNT to frizzled (FZD). GPC3 can interact with 
WNT to increase WNT concentration near the cell membrane so that WNT can interact with FZD. A series of 
downstream signaling cascades will happen and result in the transcription of genes responsible for tissue 
renewal and regeneration in adults [20]. Interestingly, another study by Capurro et al. in 2014 [20], found that 
GPC3 can also directly bind to FZD as well. Several previous studies have managed to create promising 
vaccines for HCC, which included GPC-3 as the chosen antigen [21-23]. This further supports the rationale 
behind selecting this antigen for the in-silico peptide vaccine design for HCC designated for the Indonesian 
population. 

In this study, peptides derived from GPC3 are the peptides of interest that were further investigated to 
predict epitope candidates for designing an HCC vaccine specific to the Indonesian HLA allele. These peptides 
were examined through immunoinformatics approaches to investigate the Indonesian HLA class I and class 
II binding epitopes, peptide immunogenicity, population coverage, and self-peptide analysis. Furthermore, 
the candidates were combined into a single polypeptide, and the 3D structure was predicted. The molecular 
docking was also performed to analyze the interaction between GPC3 peptide and HLA molecule. 
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2. RESULTS  

2.1. Identification of HLA allele frequencies in Indonesia 

The allele frequencies commonly found in Indonesia are obtained from the Allele Frequency Net 
Database. The obtained 20 hits of alleles for both MHC class I and II that can be found in Indonesia are listed 
in Table 1. The top 5 allele frequencies found for both MHC class I and II are HLA-A24:07 (22.2%), HLA-
A11:01 (16.4%), HLA-A33:03 (16.2%), HLA-A24:02 (13.9%) and HLA-DRB 07:01 (13.6%). The highest allele 
frequency, HLA-A24:07 is crucial especially for Javanese population. 

2.2. Predicted T and B cells epitopes of GPC3 antigen 

Both CTL and HTL epitopes of GPC3 that bind to HLA class I and HLA class II epitopes were predicted 
using NetCTLPan1.1 and NetMHCIIpan-4.0, respectively. Class I immunogenicity analysis was performed 
after the epitopes were discovered. Table 2 shows various CTL epitopes bind strongly to HLA class I with the 
corresponding immunogenicity. Out of 56 HLA-epitope binders, 30 have a positive immunogenicity score, 
which means it is most likely to produce CTL response when introduced in vitro. The peptide was sorted from 
the highest immunogenicity score (0.38167) to the lowest (0.00585). Peptide with strongest immunogenicity 
was discovered to bind to HLA-A02:01.    

Meanwhile, potential HTL binds to HLA class II with strong affinity was also discovered. Epitopes were 
also assigned to the IFN epitope server to predict whether they are able to induce the production of IFN γ or 
not. The listed peptide epitopes that are positive for IFN γ were shortlisted at Table 3. The peptides were sorted 
from the highest IFN-γ score to the lowest. Peptide with the highest IFN-γ score was identified as HLA-
DRB11:01 binders. The antibody epitope prediction is made to predict B-cell epitopes from the GPC3 (Figure 
1). The prediction was made using the IEDB analysis tool with Bepipred linear epitope prediction 2.0 method.  
Here, the yellow area indicates the sequence in GPC3 that has a score above the 0.5 threshold, which further 
indicates that the sequence is able to bind to antibodies. The longest sequence (86 aa) predicted to bind to the 
antibody was position 497R to 582H. Meanwhile, the highest score of the antibody epitope prediction is still 
above the 0.5 threshold, which is 0.658.   

2.3. Population coverage analysis of the epitopes 

The population coverage was obtained from IEDB utilizing the epitope obtained from the binding 
prediction server for both MHC class I and II allele. A total of three CTL epitopes (QAFEFVGEF, KYPIFFLCI, 
and AYYPEDLFI) and three HTL epitopes (FEIVVRHAK, IVVRHAKNY, and FLIIQNAAV) were chosen for 
further population coverage analysis for Javanese and Sundanese-Javanese population. The result in Table 4 
shows that the coverage of the alleles is very high, reaching 97.53% Observed separately, Class I and Class II 
coverage is also quite high, reaching 84.32% and 84.28%.  

2.4. Construction and evaluation of the GPC3 based peptide vaccine 

The GPC3 based peptide vaccine construct consists of three CTL epitopes (QAFEFVGEF, KYPIFFLCI, 
and AYYPEDLFI) and three HTL epitopes (FEIVVRHAK, IVVRHAKNY, and FLIIQNAAV) that were selected 
due to their high immunogenicity and IFN score. Furthermore, several epitopes in the construct also had the 
capability to bind to HLA-A_24:02 and HLA-A_24:07, which are unique Indonesian HLA. The CTL epitopes 
were linked by the AAY linkers, while the HTL epitopes were merged by the GPGPG linkers. Aside from the 
epitopes, two types of adjuvants, human β-defensin-3 and TAT sequence, were also added into the construct 
to elevate the vaccine’s immunogenicity. The human β-defensin-3 sequence was fused into the N-terminal of 
the vaccine construct with the aid of an EAAAK linker. Lastly, the TAT sequence was linked by the GPGPG 
linker to the C-terminal of the vaccine construct (Figure 2). Following the construction, the vaccine also 
underwent an antigenicity test, and the prediction score obtained was 0.5531, where it is able to induce 
antigenic response as a probable antigen. 

2.5. Peptide 3D Modeling 

The 3D modeling of the construct selected in the previous step was put into a RaptorX server. The server 
predicts the 3D structure of the constructed peptide using deep learning. Several 3D models were suggested 
by the tool. The model that ranked first based on the suggestion was chosen, which is depicted in Figure 3, 
with an estimated root mean square deviation (RMSD) of 7.4113.  
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To further refine the 3D model, the 3D model was put into a GalaxyWEB server. Five different models 
were suggested (Table 5) by the server, and model 5 was chosen, having a high Rama favored score of 92 
compared to the other models. The GDT-HA (global distance test - high accuracy) score of models 5 is 0.9375 
out of a maximum of 1, which corresponds to maximum accuracy. 

The MolProbity analysis using the SwissProt Expasy server (Table 6) resulted in a Ramachandran 
favored score of 91.98% and a MolProbity Score of 2, in line with the Molprobity and Rama favored score in 
GalaxyWEB. No rotamer outliers were detected in the SwissProt analysis, similar to the result from 
GalaxyWEB. The Ramachandran plot is illustrated in Figure 4. The plot shows that most of the residues of the 
vaccine construct fall into the allowed/favored regions. However, some of the residues are considered outliers, 
such as A107 PRO, A97 VAL, A67 PHE, A63 LYS. While there are no bad bonds, 32 residues were identified to 
form bad angles, all of which are listed in Table 6.  

2.5. Molecular docking of the vaccine construct 

The Cluspro 2.0 server was used to dock the vaccine construct Model 5 with the most frequent HLA 
found in Indonesia, including HLA-A*11:01, A*24:02, B*35:05, and B*15:02 (Table 7). It is discovered that 
interactions between Model 5 and HLA-B*35:05 have the lowest energy weighted score of -1058.4. The 
strongest interaction occurred at LYS63 residue of Model 5 against THR233 of HLA-A*11:01, with LYS63 as 
the H-donor (1.6525 Å). Apparently, this interaction is also observed between Model 5 and HLA-B*35:05 and 
B*15:02. The docked complexes were then visualized (Figure 5). It seems that a similar hydrophobicity profile 
was present in the binding sites of Model 5 to HLA molecules. 

Table 1. The most common HLA allele in Indonesia and its frequency. 
HLA Alleles Population Allele Frequency  

A*02:01  Indonesia Java-Western 0.0660 

A*11:01 Indonesia Java-Western 0.1640 

A*24:02 Indonesia Java-Western 0.1390 

A*24:07 Indonesia Java-Western 0.2220 

A*33:03 Indonesia Java-Western 0.1620 

A*34:01 Indonesia Java pop 2 0.0830 

A*34:01 Indonesia Java-Western 0.0730 

A*34:01 Indonesia Sundanese and Javanese 0.0670 

B*15:02 Indonesia Java Western 0.1220 

B*15:13 Indonesia Java-Western 0.1150 

B*15:21 Indonesia Java-Western 0.0730 

B*18:01 Indonesia Java-Western 0.0640 

B*35:05 Indonesia Java-Western 0.0860 

B*38:02 Indonesia Java-Western 0.0540 
B*44:03 Indonesia Java Western 0.0930  

B*58:01 Indonesia Java Western 0.0590 

DRB1*07:01 Indonesia Java Western 0.1360 

DRB1*11:01 Indonesia Nusa Tenggara Island 0.0890 

DRB1*12:02 Indonesia Java Western 0.3650 

DRB1*15:02 Indonesia Java Western 0.2330 
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Table 2. The predicted peptides that bind to HLA class I. 

No Peptide HLA Allele Immunogenicity 
1 FVGEFFTDV HLA-A*02:01 0.38167 
2 QAFEFVGEF HLA-B*15:02, HLA-B*15:13, HLA-B*15:21, HLA-B*35:05 0.37871 
3 AHVEHEETL HLA-B*38:02 0.34708 
4 KYPIFFLCI HLA-A*24:02, HLA-A*24:07 0.31366 
5 ISVVCFFFL HLA-B*58:01 0.27984 
6 SVVCFFFLV HLA-A*02:01, HLA-A*34:01 0.27567 
7 NQLRFLAEL HLA-B*38:02 0.24356 
8 HFKYPIFFL HLA-A*33:03 0.20796 
9 LRFLAELAY HLA-B*18:01 0.17269 
10 AYYPEDLFI HLA-A*24:02, HLA-A*24:07 0.16506 
11 GEFFTDVSL HLA-B*18:01, HLA-B*38:02, HLA-B*44:03 0.15266 
12 FDSLFPVIY HLA-B*18:01 0.1513 
13 FLAELAYDL HLA-A*02:01, HLA-A*38:02 0.14932 
14 EVINTTDHL HLA-A*34:01 0.14865 
15 YWREYILSL HLA-A*24:02 0.1332 
16 LFPVIYTQL HLA-A*24:02, HLA-A*24:07 0.12914 
17 VINTTDHLK HLA-A*11:01 0.11646 
18 FLIIQNAAV HLA-A*02:01 0.11411 
19 STFHNLGNV HLA-A*34:01 0.07863 
20 KSLQVTRIF HLA-B*58:01 0.07802 
21 FPVIYTQLM HLA-B*35:05 0.07602 
22 AELAYDLDV HLA-B*44:03 0.05665 
23 NEISTFHNL HLA-B*18:01, HLA-B*38:02, HLA-B*44:03 0.04825 
24 HQVRSFFQR HLA-A*33:03 0.0457 
25 RTACLVVAM HLA-B*58:01 0.04421 
26 VAENDTLCW HLA-B*58:01 0.04327 
27 MENVLLGLF HLA-B*18:01, HLA-B*44:03 0.04032 
28 LIIQNAAVF HLA-B*15:02, HLA-B*15:13, HLA-B*15:21, HLA-B*35:05 0.01431 
29 VLLGLFSTI HLA-A*02:01 0.01296 
30 KIWHFKYPI HLA-A*02:01 0.00585 

 

2.6. Self-peptide Analysis    

The vaccine construct exhibited no similarities to human peptides apart from the human β-defensin protein 
that was intentionally put into the construct as an adjuvant to trigger an immune response (Figure 6).    

3. DISCUSSION 

3.1. Vaccine Construction 

Human Leukocyte Antigen (HLA) are highly polymorphic, even known to be the most polymorphic 
gene in humans. Different individuals would have different alleles, and they are even more varied in 
Indonesia, where the population is enormous while the people are divided into countless ethnic, race, and 
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cultural groups [24]. Unfortunately, the highly polymorphic HLA allele becomes the limitation in making 
peptide-based vaccines as not all peptides are able to bind specific HLA molecules [25-26]. Nonetheless, as can 
be seen in Table 1, several HLA alleles are more common than the others. Designing a vaccine using peptides 
that are restricted to these common HLA molecules could increase the population coverage (Table 3).  

Net-CTLPan1.1 predicted the binding of 9 mer peptides from GPC3 to HLA class I molecules. Strong 
binders are most likely to induce CD8+ cells immune response, which is very important in eliminating tumor 
cells [27]. The prediction algorithm includes three main parameters: peptide binding to MHC class I, 
proteasomal C-terminal cleavage, and TAP (transporter associated with antigen processing) transport. In 
order to further exclude non-immunogenic peptides, the strong binders from Net-CTLPan1.1 were subjected 
to another analysis with Class I Immunogenicity prediction tools from IEDB. It turns out not all strong binders 
have strong immunogenicity (Table 2).  

Meanwhile, GPC3 peptides bound to HLA class II were predicted using Net-MHCPan-4.0 (Table 3). 
Similar to Net-CTLPan1.1, this software also involves peptide processing aside from the binding affinity. 
Although many cancers immunotherapy focuses more on CD8+ T cells, a study has shown that CD4+ T cells 
also play important roles mainly by activating CD8+ T cells, direct antitumor immunity achieved by the 
production of IFN-γ and TNF-α, and activating antibody-producing B cells [28]. Aside from triggering direct 
antitumor immunity, IFN-γ helps differentiate naive T cells into CD8+ T cells and aids in their proliferation. 
Moreover, IFN-γ induces the “classical’ polarization of macrophages towards those with a proinflammatory 
profile [29]. These summarized why predicting the ability of peptide sequence to induce IFN-γ is crucial in 
vaccine construction. 

Table 3. The predicted peptides that bind to HLA class II. 

No Peptide (15 mer) Peptide (9 mer) HLA IFN score 

1 VFQEAFEIVVRHAKN FEIVVRHAK HLA-DRB*11:01 0.99709285 
2 FQEAFEIVVRHAKNY FEIVVRHAK HLA-DRB*11:01 0.95512342 
3 EAFEIVVRHAKNYTN FEIVVRHAK HLA-DRB*11:01 0.74654834 
4 EAFEIVVRHAKNYTN IVVRHAKNY HLA-DRB*12:02 0.74654834 
5 QEAFEIVVRHAKNYT FEIVVRHAK HLA-DRB*11:01 0.64504629 
6 QEAFEIVVRHAKNYT IVVRHAKNY HLA-DRB*12:02 0.64504629 
7 LKFLIIQNAAVFQEA FLIIQNAAV HLA-DRB*15:02 0.57449334 
8 ELKFLIIQNAAVFQE FLIIQNAAV HLA-DRB*07:01, HLA-DRB*15:02 0.55791633 
9 MELKFLIIQNAAVFQ FLIIQNAAV HLA-DRB*15:02 0.55617682 
10 AFEIVVRHAKNYTNA IVVRHAKNY HLA-DRB*12:02 0.26649461 
11 ELIQKLKSFISFYSA LKSFISFYS HLA-DRB*15:02 0.23274713 
12 LIQKLKSFISFYSAL LKSFISFYS HLA-DRB*15:02 0.22835791 
13 MEEKYQLTARLNMEQ YQLTARLNM HLA-DRB*11:01 0.22034221 
14 LKSFISFYSALPGYI ISFYSALPG HLA-DRB*15:02 0.12309987 
15 DNEISTFHNLGNVHS ISTFHNLGN HLA-DRB*15:02 0.094234149 
16 LNMEQLLQSASMELK LLQSASMEL HLA-DRB*07:01 0.08392476 
17 SMELKFLIIQNAAVF FLIIQNAAV HLA-DRB*15:02 0.070282914 
18 RRRELIQKLKSFISF IQKLKSFIS HLA-DRB*12:02 0.069624799 
19 KSFISFYSALPGYIC ISFYSALPG HLA-DRB*15:02 0.050873904 
20 RELIQKLKSFISFYS IQKLKSFIS HLA-DRB*12:02 0.034590432 
21 KLKSFISFYSALPGY ISFYSALPG HLA-DRB*15:02 0.024479533 
22 KVKNQLRFLAELAYD LRFLAELAY HLA-DRB*12:02 0.017517663 
23 RRELIQKLKSFISFY IQKLKSFIS HLA-DRB*12:02 0.0083627795 

Apart from T cells, B cells activation is also crucial for anti-tumor immunity. B cells secrete 
immunoglobulins (Ig) which inhibit tumor growth [30]. Additionally, B cells promote T cells response by 
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aiding through the antigen presentation process. Another role of B cells that are mostly ignored is suppressing 
pro-tumorigenic cells called Bregs. Bregs produce cytokines such as IL-10, TGF-β, and STAT3, which suppress 
NK and T cell response [31]. These factors also support MDSC, which further suppresses the anti-tumor 
immune response in the tumor microenvironment [32].  

As a result, a peptide-based vaccine approach was applied in this study. A peptide-based vaccine is one 
of the active cancer immunotherapies that functions to evaluate both innate and adaptive immune responses 
against tumor-specific or associated antigens [33]. This approach is prominent in cancer treatment due to its 
advantages, including high specificity, safety, cost-efficient production, and stability. However, peptide-based 
vaccines, especially single-epitope-based vaccines, may possess low immunogenicity and rapid degradation 
[34].  

Therefore, two types of adjuvants, human β-defensin-3 and TAT sequence, were fused with the epitopes 
from GPC3 to enhance the immunogenicity of the peptide-based vaccine further. The human β-defensin-3 was 
linked to the N-terminal, while the TAT sequence was connected to the C-terminal of the vaccine construct. 
The human β-defensin-3 is able to interact with chemokine receptor-6 (CCR-6), which elicits innate immune 
responses. Not to mention, the human β-defensin-3 is also crucial in the recruitment of naive T cells. On the 
other hand, the TAT sequence functions to help the vaccine construct’s intracellular delivery [35]. Lastly, the 
epitopes and adjuvants in the GPC3-based vaccine were fused using three types of linkers (EAAAK, AAY, 
and GPGPG). Besides linking the epitopes, these linkers also play crucial roles in the protein folding, flexibility, 
and vaccine construct’s stability [36]. After the GPC-3 based vaccine was constructed, the vaccine was further 
evaluated by using an antigenicity test to reveal the ability of the antigen in eliciting immune responses from 
B cell and T cell [37]. The threshold for tumor antigenicity in the Vaxijen server is set to 50%, whereas the 
prediction score of the GPC-3 based vaccine construct was 55,31%. Hence, the GPC-3 based vaccine construct 
has the potential as a vaccine to promote immune responses. The chosen peptides were different from previous 
peptide vaccine constructs that already undergo Phase II clinical trials in Japan [21]. The difference might be 
due to the difference in HLA allele between countries. As previously mentioned, Indonesian alleles are 
heterogenous hence the peptide was chosen based on the most commonly found HLA allele [27]. 

3.2. Peptide 3D Modeling 

The aim of this step is to create a 3D model of the vaccine construct. This study opted to use RaptorX. It 
is a web server that can predict the 3D structure of a protein sequence without the help of any templates, 
unlike homology modeling [38]. There are several prediction software that can be utilized, such as PSIPRED 
[39], JPRED [40], SPINE-X [41], and SANN [42]. However, RaptorX was chosen because it had achieved the 
highest accuracy for secondary structure prediction [43]. 

 RaptorX produced several models, and the number one suggested model was chosen for refinement 
in GalaxyWEB. Six different parameters were evaluated for every refinement model. GDT-HA measures the 
agreement between a predicted model and the experimental structure. The score reflects the accuracy in the 
placement of Cα atom positions [43]. Model 5 had a score of 0.9375, which is the fourth-lowest score compared 
to the other models. However, model 5 had the lowest MolProbity score. Molprobity is a log-weighted 
combination of Clash score, percentage Ramachandran not favored, and percentage bad side-chain rotamers 
[44]. Therefore, a lower Molprobity score in the models provided than in the initial template put into the 
prediction software would be highly sought after. This is one of the reasons why model 5 was chosen. Clash 
score is the number of serious clashes per 1,000 atoms [44]. Therefore, a lower score would be better, which 
both model 5 and model 1 satisfied. However, model 1 was not selected because it had a lower GDT-HA score. 
All of the models did not have bad rotamers, which is good since poor rotamers are in unfavorable 
conformations [44]. The next parameter is the Ramachandran favored percentage. Model 5 had the highest 
Rama favored score of 92%, higher than the initial 3D model that was put into the refinement tool. A high 
Rama favored score signifies that the majority of the backbone angles of the residues are in the favored regions 
in the Ramachandran plot. This is in agreement with the result of the Ramachandran plot generated from the 
SwissProt MolProbity analysis (Table 3), whereby most of the residues are within the favored region in the 
Ramachandran plot. The Ramachandran plot from the SwissProt result was also similar to the GalaxyWEB 
analysis, which further substantiated the accuracy of the 3D model generated from RaptorX and the 
refinement done by GalaxyWEB. Furthermore, RaptorX has been utilized to predict the 3D structure of a 
peptide sequence as a vaccine for hepatocellular carcinoma [45], Kaposi sarcoma [46], and even a universal 
cancer vaccine [47]. 
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Table 4. The population coverage of GPC3 based peptide vaccine in Indonesia 

Antigen 
Class I Class II Class Combined 

Coverage a Average hit b pc90 c Coverage a Average hitb pc90 c Coverage a Average hit b pc90 c 

GPC3 84.32% 2.03 0.64 84.28% 1.03 0.64 97.53% 3.06 1.56 
a projected population coverage 
b average number of epitope hits/ HLA combinations recognized by the population 
c minimum number of epitope hits/ HLA combinations recognized by 90% of the population 

3.3 Molecular Docking 

The Cluspro 2.0 server uses PIPER, a docking program that implements the Fast Fourier Transform 
(FFT) correlation method. FFT calculates energy function, thus enabling the sampling of billions of 
conformations of two interacting proteins. In Cluspro, the docked protein model was selected based on the 
cluster size. The bigger the cluster size, the higher probability of interactions. Furthermore, the server provides 
information regarding the lowest energy. It does not directly affect the binding affinity, but low-energy regions 
are more likely to produce more docked structures clusters [48-49].  

In order to design an efficient vaccine construct based on antigen, it is crucial to properly understand 
the structural basis of antigen-HLA interactions. Direct and template-based docking methods are the two types 
of docking procedures. Direct techniques use thermodynamics to discover the structure of the target complex 
situated at the lowest Gibbs free energy in conformational space, which necessitates a computationally feasible 
free-energy evaluation model and an effective reduction algorithm [48]. The biological activity of the ligand is 
inferred by hydrogen bonds and hydrophobic interactions between the ligand and the particular target. 

The average number of hydrophobic atoms in marketed drugs is 16, with one to two donors and three 
to four acceptors [50]. This emphasizes the value of hydrophobic interactions in medication development. 
They can improve the affinity of binding between target-vaccine interfaces. It has already been observed that 
inserting them at the hydrogen bonding location can improve the binding affinity and medication 
effectiveness related to hydrophobic interactions [51]. Figure 5 shows many hydrophobic interactions are 
present in the HLA-B*35:05 binding site and may be important for vaccine-HLA binding. This HLA-B*35:05 
model shows promising results in both the lowest energy and hydrophobic interactions. 

4. CONCLUSION 

In conclusion, a vaccine composed of GPC3-derived peptides was developed in order to promote 
immune responses against HCC. The vaccine construct consists of six T cell epitopes obtained from GPC3, 
which have strong immunogenicity and high population coverage. Further analysis indicates that the vaccine 
construct is highly potential as a treatment against HCC, and it can cover most of Indonesian populations. 
Additionally, structural docking between vaccine and HLA molecules shows promising interactions, allowing 
the activation of CTLs. In addition, BLASTp analysis revealed that the constructed peptide vaccine exhibited 
no similarities to human peptides. Be that as it may, further in vitro and in vivo studies should be conducted 
to verify the efficacy of constructed peptide vaccines towards HCC.  
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5. MATERIALS AND METHODS 

5.1. Protein sequence retrieval  

 

 
Figure 1. The antibody epitope prediction result of GPC3 antigen using the IEDB tool and Bepipred linear 
epitope prediction 2.0 method. The average score is 0.494, the minimum score is 0.154, and the maximum 
score is 0.658. 

The FASTA sequence for GPC3 was retrieved from NCBI. The FASTA sequence for all of the isoforms 
was retrieved (NP_001158089.1; NP_001158090.1; NP_001158091.1; NP_004475.1), and the longest isoform 
(NP_001158089.1) was used as the target sequence. 

5.2. Identification of Indonesia’s allele frequencies 

The Allele Frequencies Net Database (http://allelefrequencies.net/default.asp) was used to identify the 
predominant HLA alleles among the Indonesian population. The parameter “Indonesia” was selected for the 
country tab. Alleles that were found to have frequencies >5% of the Indonesian population were included for 
further analysis.  

5.3. Prediction of T and B cell epitopes  

The NetCTLpan - 1.1 (https://services.healthtech.dtu.dk/service.php?NetCTLpan-1.1) was used to 
predict CD8+ T-cell peptides from glypican-3 protein that will bind to MHC class I molecules. The sequence 
of GPC3 was inputted into the sequence tab along with Indonesia’s HLA-A and HLA-B allele from the 
previous analysis. The threshold for C terminal cleavage was set to 0.225, while the TAP efficiency was set to 
0.025. The threshold used for epitope identification was 1.0. Several 9-mer peptides with the “E” indicator 
were chosen as “MHC class I-binders” and validated for their immunogenicity using the class I 
Immunogenicity analysis tool by IEDB (http://tools.iedb.org/immunogenicity/). 

To predict CD4+ T-cell peptides, NetMHCIIpan - 4.0 server 
(https://services.healthtech.dtu.dk/service.php?NetMHCIIpan-4.0) was used. The sequence of GPC3 and 
Indonesia’s HLA-DRB1 alleles was inputted. The thresholds for strong and weak binding were set to 2% and 
10%, respectively. Several peptides with the “SB” indicator were chosen as “MHC class II-binders”. Their 
IFNɣ-inducing capabilities were evaluated using an IFNɣ epitope prediction tool 
(http://crdd.osdd.net/raghava/ifnepitope/predict.php).  
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The last prediction to be done was the B-cell epitope. The antibody prediction epitope tool by the 
Immune Epitope Database and Analysis Resource (IEDB) (http://tools.iedb.org/bcell/) was used to predict 
B-cell epitopes of glypican-3 protein. The sequence of GPC3 was inputted in the sequence tab, and the 
Bepipred Linear Epitope 2.0 was chosen as the method. 

 
Figure 2. The schematic diagram of the GPC3 based peptide vaccine. 

 
Figure 3. The predicted 3D structure of the vaccine that 
was constructed from RaptorX. 

Table 5. The protein structure refinement of models in GalaxyWEB. GDT-HA: global distance test - high 
accuracy; RMSD: root-mean-square deviation. 

Model GDT-HA MolProbity Clash  
Score 

Poor  
rotamers 

Rama  
favored 

Initial 1 2.687 24.6 1.7 86.4 
Model 1 0.9253 2.201 15.5 0 91.4 
Model 2 0.9436 2.268 17.4 0 90.7 
Model 3 0.9405 2.221 16.3 0 91.4 
Model 4 0.9421 2.211 15.9 0 91.4 
Model 5 0.9375 2.180 15.5 0 92.0 

5.4. Population coverage analysis and vaccine construct design  

A series of CD8+ and CD4+ epitopes was chosen as the construct. In order to evaluate the construct, a 
population coverage analysis using the IEDB Population Coverage tools (http://tools.iedb.org/population/) 
was conducted. The epitopes of GPC3 were inputted, and the country parameter tab was set to Indonesia. A 
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group of peptides with high coverage (≥90%) was chosen. Linkers and adjuvants were also included between 
the included epitopes. 

Table 6. The MolProbity analysis of Model 5 using SwissProt. 

MolProbity Results GDT-HA 

MolProbity score 2 
Clash Score 9.74 
Ramachandran favored 91.98% 
Ramachandran outliers 2.47% 

A107 PRO, A97 VAL, A67 PHE, A63 LYS 

Rotamer outliers 0 
C-beta deviations 8 
Bad bonds 0/1265 
Bad angles 32/1709 

A90 PHE, (A62 TYR-A63 LYS), A9 TYR, A140 PHE, A76 TYR, A82 PHE, 
A67 PHE, A59 PHE, A97 VAL, A77 TYR,  A78 PRO, A132 LEU, A53 
PHE, A63 LYS, (A101 ALA-A102 LYS), A117 HIS, A99 ARG, (A82 PHE-
A83 ILE), A136 ASN, A100 HIS, (A111 PHE-A112 GLU), A96 ILE, A17 
ARG, (A96ILE-A97 VAL), A143 ALA, (A66 ILE-A67 PHE) 

 
Figure 4. The Ramachandran plot of Model 5. The green-colored areas are the 
allowed regions and the orange dots are the residues of the vaccine construct. Most of 
the residues fall within the allowed/favored regions. 

 



 

Angelika et al. 
Glypican-3 as an HCC vaccine candidate for the indonesian population 

Journal of Research in Pharmacy 

 Research Article 

 

 

 http://dx.doi.org/10.29228/jrp.194 
J Res Pharm 2022; 26(4): 962-979 

973 

Table 7. Summary of molecular interactions of the vaccine construct against HLA class I. 

HLA Lowest 
Energy 

Hydrogen bond Interactions 

Complex Pair 
Interacting 

Atoms 
Bond Distance 

(Å) 
Peptide HLA 

A*11:01 -959.4 ARG21 PRO105 HH11 O - H 2.07971 
ARG21 PRO105 HH21 O - H 1.94027 
THR5 THR190 O - H 1.88498 
LEU6 HIS192 O - H 2.15465 
CYS11 ARG202 HH11 O - H 1.92504 
GLN7 ARG202 O - H 1.76041 
CYS11 ARG202 HH21 O - H 1.96329 
VAL13 LEU230 O - H 2.97056 
ARG234 HH11 GLY1 O - H 2.15229 
ARG234 HH21 GLY1 O - H 1.74023 
THR5 HIS188 H - N 2.41295 
GLN7 HIS192 H - N 2.583 
TYR10 THR200 H - O 1.85173 
ARG12 ASP227 H - O 2.60818 
VAL13 GLU229 H - O 2.12593 
LYS63 THR233 H - O 1.6525 

A*24:02 -976.6 PRO147 THR10 O - H 2.13605 
  GLY144 ARG21 HH11 O - H 2.54416 
  GLY146 ARG21 HH11 O - H 2.46411 
  ALA143 ARG21 HH12 O - H 2.76424 
  GLY146 ARG21 HH21 O - H 1.98349 
  ALA158 GLN96 HE22 O - H 2.08371 
  TYR10 ARG202 HE O - H 2.159 
  TYR10 ARG202 HH22 O - H 1.78144 
  VAL13 GLU232 H O - H 2.31917 
  CYS11 ARG234 HH11 O - H 2.55869 
  CYS11 ARG234 HH12 O - H 2.96766 
  ILE3 ARG234 HH21 O - H 2.38587 
  GLN7 ARG234 HH21 O - H 2.39489 
  GLY1 GLN242 HE22 O - H 1.90903 
  GLN7 TRP244 HE1 O - H 2.02207 
  TYR10 GLU229 H - O 1.89603 
  ARG17 GLN96 H - O 2.24075 
  LYS26 HIS192 H - O 1.89434 
  GLY160 GLY120 H - O 2.79202 
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Table 7. Summary of molecular interactions of the vaccine construct against HLA class I (Continued). 

HLA Lowest 
Energy 

Hydrogen bond Interactions 

Complex Pair 
Interacting 

Atoms 
Bond Distance 

(Å) 
Peptide HLA 

B*35:05 -1058.4 GLY106 ARG35 HH12 O - H 2.3801 
  TYR62 ARG48 HH21 O - H 1.75561 
  PRO147 GLN96 HE21 O - H 2.3531 
  LEU6 HIS192 HD1 O - H 2.4027 
  TYR10 ARG202 HH11 O - H 1.8298 
  TYR10 ARG202 HH21 O - H 1.88426 
  THR5 TRP204 HE1 O - H 2.54504 
  VAL13 GLU232 H O - H 2.66484 
  GLN7 TRP244 HE1 O - H 2.03719 
  TYR10 HH THR200 H - O 2.75285 
  ARG12 HE GLU229 H - O 1.91938 
  LYS63 THR233 H - O 1.69116 
B*15:02 -954.9 GLY150 THR10 O - H 1.88922 
  GLU142 ARG21 O - H 1.80645 
  ALA143 ARG21 O - H 2.23496 
  PRO145 GLN32 O - H 2.44916 
  PRO145 ARG35 O - H 1.76209 
  PRO105 ARG35 O - H 1.95654 
  GLY106 ARG48 O - H 1.89418 
  PRO107 ARG48 HH11 O - H 1.92646 
  PRO107 ARG48 HH21 O - H 2.1181 
  LEU6 HIS192 O - H 2.12021 
  GLN7 ARG202 O - H 1.72814 
  TYR10 ARG202 O - H 1.75839 
  THR5 TRP204 O - H 3.0826 
  VAL13 GLU232 O - H 2.1317 
  GLY1 ARG234 HE O - H 2.64079 
  GLY1 ARG234 HH22 O - H 1.9615 
  TYR10 GLU229 H - O 1.97158 
  ARG12 GLU229 H - O 1.92493 
  ALA19 GLU232 H - O 2.13841 
  LYS63 THR233 H - O 1.69433 
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5.5. Construct Antigenicity analysis 

Vaxijen (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) was used to evaluate the 
antigenicity of the construct. The construct was carried on to the next step of the analysis if it had a score of 
≥0.5.  

 
Figure 5. Comparison of hydrophobicity docking (binding) sites of (a) A*11:01, (b) B*15:02, (c) A*24:02 and (d) B*35:05 
on Model 5. The residues at the interface are represented as lines and sticks. H-bonds (green color) between two 
molecules are displayed using a dashed line., 
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Figure 6. The self-peptide analysis in BLASTp using the peptide vaccine sequence. 

5.6. Peptide 3D Modelling and Molecular Docking 

The way the small peptide folds and forms a 3D structure was predicted using the RaptorX server 
(http://raptorx.uchicago.edu). The sequence was inserted, and the server predicted the best structure 
prediction. The predicted structure was further refined through the Galaxy Refine server 
(http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE). The PDB files generated from the RaptorX 
server were used as input. Then the result obtained was screened to obtain the ideal construct based on the 
Molprobity, and Rama favored the score. Furthermore, the refined structure was assessed by Ramachandran 
plot analysis using the SwissProt Expasy server (https://swissmodel.expasy.org/assess). Docking was then 
performed using the ClusPro plugin through PyMol. The utilized algorithm is the Lamarckian Genetic 
Algorithm (LGA) to check the binding affinity of the 3D structure and molecular docking. 

 
5.7. Self-peptide Analysis 

 The peptide sequence of the vaccine construct was put into NCBI-BLASTp 
(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) to evaluate whether the peptide sequence 
exhibited similarities to human proteins. As such, the peptide vaccine sequence was compared with Homo 
sapiens (taxid:9606) in NCBI-BLASTp against the refseq protein database. 
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