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ABSTRACT
Cobalt oxide (Co3O4) nanoparticles have been extensively 
used in various industrial and medical applications due to 
their special optical, magnetic, and electrical activity features. 
However, there is a lack of information about their toxicity 
and adverse effects on human health, especially concerning 
the kidney, which is considered to be a secondary target organ. 
We investigated the toxic potentials of Co3O4 nanoparticles 
on NRK-52E kidney epithelial cells by in vitro assays. Co3O4 

nanoparticles were taken up by the kidney cells, and caused a 
decrease in cell viability, by significantly inducing apoptosis/
necrosis at 100 µg/mL. However, no significant DNA damage 
was observed. Co3O4 nanoparticles induced cellular toxicity in 
kidney cells. These results should raise concern about the safety 
of Co3O4 nanoparticles in their various applications. Further 
studies are needed to elucidate their toxic mechanism.
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INTRODUCTION

Nanotechnological products have been used widely in 
fields ranging from medicine to industry because of their 
physicochemical properties. However, the human and 
environmental concern are gradually increased [1]. It 
is well known that nanoparticles be absorbed through 
the skin, ingested, and inhaled during occupational 
and/or environmental applications [2]. With systemic 
administration, nanoparticles could penetrate from biological 
membranes. For instance, cobalt (Co)-based nanoparticles 
easily penetrate and cause damage to the skin more than the 
bulk material itself [3]. In addition, direct exposure to the 
bulk materials that are used in various fields can indirectly 
expose humans to their nanoparticles [4].

Co-based nanoparticles are used in different technological 
products including sensors, catalysts, pigments, and 
magnetism and energy storage devices [5-6]. The Co intake 
in food has been estimated to be 5-40 mg/day [7]. A study 
that include 970 exposure measurements in Japan reported 
Co exposures of ambient personal monitoring of 1-6400 mg/
m3 [8]. Similar levels were found in the range of 0.9-81 mg/
m3 in a German study [9], and levels of 2-240 mg/m3 in a 
study from the United States [10]. In a Finnish study, 8-hour 
time-weighted average (TWA) levels were 2-240 mg/m3 [11].
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The use of Co is favoured in nanomedicine and 
nanotechnology due to its enhanced magnetic properties, 
although it is reported Co3O4 is highly toxic and is classified 
as possibly carcinogenic to humans (Group 2B) by the 
International Agency for Research on Cancer (IARC) [12-
13]. Prolonged exposure of rats and rabbits to Co3O4 (0.4-9 
mg Co/m3) resulted in lesions in the alveolar region of the 
respiratory tract [14]. Also, lifetime exposure of hamsters to 
Co3O4 (7.9 mg Co/m3) resulted in emphysema [15]. Primary 
respiratory effects in occupationally exposed humans 
have been reported as ranging from 0.015 to 0.13 mg Co/
m3 [7]. The no-observed-adverse-effect-level (NOAEL) for 
chronic inhalation exposure was 0.0053 mg Co/m3 [7]. The 
acute median lethal concentration (LC50) for a 30-minute 
inhalation exposure in rats was 165 mg Co/m3 [16]. In South 
Africa, the highest concentrations of cobalt in ambient air 
and in urine samples of workers were 9.9 mg/m3 and 712 
μg/g creatinine, respectively [17]. In previous studies, it has 
been reported that Co3O4 particles were readily taken up 
through endocytosis and were partially solubilized at the low 
pH within lysomes [18-19].

Nanoparticles can affect the cell macromolecules, and have 
a role in oxidative stress, DNA damage, cell function and 
morphological change in the exposed organ or system such as 
lung, liver, kidney, and gastrointestinal and nervous systems 
[20]. Co3O4, one of the most interesting and widely used Co-
NPs, might induce oxidative stress [19], DNA damage and 
genotoxicity [21-22], cell death, and inflammatory responses 
[23-25]. It was reported that occupational exposure to Co-
NPs has been associated with adverse health effects including 
rhinitis, asthma, allergic dermatitis, and cardiomyopathy 
[26]. As the previous studies have been reported, As it is well 
known, nanoparticle toxicity is still controversial and depends 
on cell type sensitivity, method and condition of exposure, 
as well as nanoparticle characterisation [27-28]. In addition, 
there have been no studies concerning the nephrotoxicity of 
Co3O4 nanoparticles. In this study, we aimed to evaluate by in 
vitro assays the toxic effects of Co3O4 nanoparticles on kidney 
(NRK-52E) cells.

MATERIALS AND METHODS

Chemicals: Co3O4, neutral red dye, triton X-100 and MTT 
(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium 
bromide) were from Sigma Chemical Co. Ltd. (St. Louis, 
MO, USA). Cell culture medium (DMEM F-12) and all 
other supplements were from Multicell Wisent (Quebec, 
Canada). Annexin V-FITC apoptosis (AV) detection kit 

with propidium iodide (PI) was from Exbio (Vestec, Czech 
Republic). The other chemicals were from Merck (NJ, USA).

Particle size characterisation: Co3O4 nanoparticles were 
suspended in milli-Q water and cell culture medium with 
10% fetal bovine serum (FBS), and thentheir particle size 
and distribution were measured by Transmission Electron 
Microscopy (TEM) (Jem-2100 HR, Jeol, USA) [29-31].

Cell culture and exposure condition: In the study, NRK-
52E rat kidney proximal tubular epithelial cells (CRL-1571) 
was purchased from the American Type Culture Collection 
(ATCC). The cells were incubated in DMEM-12 medium 
supplemented with FBS and antibiotics at 5% CO2, 90% 
humidity and 37°C for 24 h. The cell densities were 1x106 
cells/mL in all assays. Co3O4 nanoparticles were freshly 
suspended at 1 mg/mL concentration in cell culture medium 
with 10% FBS and sonicated at room temperature for 15 min 
to avoid the aggregation/agglomeration of the nanoparticles 
before use [29-31]. The cell exposed final concentrations 
of 0-750 µg/mL in the cytotoxicity assays, 0-100 µg/mL in 
genotoxicity assay, 0-100 µg/mL in apoptosis/necrosis assay, 
and 200 µg/mLin the cellular uptake assay [30]. The exposure 
time to the particle suspension was 24 h.

Cellular uptake by Inductively Coupled Plasma-Mass 
Spectrometry (ICP-MS): To determine cellular uptake of 
Co3O4 nanoparticles, the NRK-52E cells were exposed to 200 
µg/mL concentration of the particle suspensions. The cells 
were prepared as to Abudayyak et al. [29-30], and counted 
by Luna cell counter (Virginia, USA). The samples were 
assayed for Co amount by using ICP-MS (Thermo Elemental 
Xseries 2, USA). Also, Co content of the untreated cells was 
measured.

Cytotoxicity evaluation: The cytotoxic potential of Co3O4 

nanoparticles was determined by MTT and neutral red 
uptake (NRU) cytotoxicity assays, and AV apoptosis detection 
assay with PI. By these assays, the induction potential of 
the particles on metabolism alteration and apoptosis were 
observed [29-33]. The cell exposed final concentrations of 0, 
25, 50, 100, 250, 500 and 750 µg/mL. Optical density (OD) 
was read by a microplate spectrophotometer system (Epoch, 
Germany). In every assay, the untreated cells were evaluated 
as control. It was calculated the inhibition of enzyme activity 
observed in cells compared to negative control (1% PBS) 
cells.

To determine the apoptosis induced potentials of Co3O4 

nanoparticles, it was determined by AV apoptosis detection 
kit with PI according to supplier instruction. In the assay, it 
was enabled viable (AVnegative / PInegative), apoptotic (AVpositive 
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/ PInegative) or (AVpositive / PIpositive) and necrotic (AVnegative / 
PIpositive) cells to be distinguished. The cell exposed final 
concentrations of 0, 0.1, 10 and 100 µg/mL in the apoptosis/
necrosis assay [29-30]. The cells were distributed on the 
slides and immediately counted under a phase-contrast 
fluorescent microscope (Olympus BX53, Tokyo, Japan). The 
cells incubated at 55 °C for 20 min were evaluated as positive 
control. The untreated cells were used as negative control to 
define the basal level of the apoptotic cells. The percentage 
of cells induced to apoptosis was determined by substracting 
the percentage of apoptotic cells in the untreated cells from 
percentage of apoptotic cells in the treated cells. Results were 
expressed as percent of the total cell amount.

Genotoxicity evaluation: The genotoxic potential of Co3O4 

nanoparticles was determined by comet assay [29-31, 34]. 
The cells were exposed to final concentrations of 0, 0.1, 
10 and 100 µg/mL. Hydrogen peroxide (H2O2) (100 µM) 
and PBS (1%) were used as positive and negative controls, 
respectively [29-31]. The number of DNA breaks were scored 
under a fluorescent microscope (Olympus BX53, Tokyo, 
Japan) at 400 magnifications by using an automated image 
analysis system (Comet Assay IV, Perceptive Instruments, 
Suffolk, UK). DNA damage to individual cells was expressed 
as a percentage of DNA in the comet tail intensity.

Statistical analysis: All experiments were done in triplicates 
and each assay was repeated three time. Data was expressed 
as mean ± standard deviation (SD). The significance of 
differences between untreated (negative control) and treated 
cells with nanoparticles was calculated by one-way ANOVA 
Dunnett t-test using SPSS version 17.0 for Windows (SPSS 
Inc., Chicago, IL). p values of less than 0.05 were selected as 
the levels of significance.

RESULTS AND DISCUSSION

According to the results of TEM analysis, the average size 
of Co3O4 nanoparticles was 39 ±21 nm in water with narrow 
size distribution. When the particle size distribution 
was evaluated after dispersion in culture medium, the 
nanoparticles were observed to be slightly agglomerated 
and/or aggregated in the cell culture medium. Their average 
sizes (range) were increased to 101.5 nm (32.6-157.1 
nm) (Figure 1). With ICP-MS, we observed that Co3O4 

nanoparticles were taken up by NRK-52E kidney cells. The 
mean Co amount in the intracellular fluid was 1.5 µg/mL/105 

cells. We observed that Co3O4 nanoparticles decreased the 
cell metabolic activity with mitochondrial and lysosomal 

dysfunctions with in a concentrationdependent manner 
(Figure 2). The IC50 value of Co3O4 nanoparticles on NRK-
52E cells was 312.75 µg/mL by MTT assay. According to 
NRU assay results, the maximum observed cellular death 
was 21.63% at the maximum exposure concentration of 750 
µg/mL. According to these results, we indicate that kidney 
cells could be a sensitive target due to the cytotoxic effect 
of Co3O4 nanoparticles on mitochondrial function. Alinovi 
et al. [13] compared the cytotoxic effects of titanium 
dioxide (TiO2) and Co3O4 nanoparticles on human aortic 
and umbilical vein endothelial cells. They observed TiO2 

nanoparticles showed few acute cytotoxic effects even at 
very high concentrations, whereas Co3O4 nanoparticles 
impaired cell metabolism in a concentration- and time-
dependent manner. Alarifi et al. [5] reported that Co3O4 
nanoparticles had a cytotoxic effect on HepG2 liver cells 
(46.0% cell death at 25 µg/mL for 24 h; 62.0% cell death at 
25 µg/mL for 48 h). Similarly, Petrarca et al. [25] observed 
that Co3O4 nanoparticles were cytotoxic on leukemic cancer 
cells (IC50 value ≤21.3 µg/mL).

In the present study, Co3O4 nanoparticles induced significant 
cell death by apoptosis and necrosis on NRK-52E cells (p 
≤0.05). Apoptosis and necrosis frequencies were observed 
in 70.04% and 29.38% of the dead cells respectively, at an 
exposure concentration of 100 µg/mL. Co3O4 nanoparticles 
induced apoptosis (≤10.64-fold) as well as necrosis (≤3.69-
fold) in NRK-52E cells compared with negative control cells 
(Figure 3). Similarly, Co3O4 nanoparticles induced apoptosis 
(at 10-25 µg/mL) in leukemic cancer cells [24]. Spigoni et al. 
[35] reported that Co3O4 nanoparticles significantly reduced 
cell viability, and induced apoptosis, oxidative stress, caspase 
activity, and pro-inflammatory cytokine gene expression in 
vitro. They indicated that the adverse effects might be relevant 
for a potential role of exposure to titanium dioxide (TiO2) 
and Co3O4 nanoparticles in enhancing cardiovascular risk 
in humans. Chattopadhyay et al. [24, 28] found that Co3O4 
nanoparticles significantly induced cell death generated by 
ROS, which induced tumor necrosis factor-α (TNF-α) by 
activating pro-apoptotic factors (p38-MAPK, caspase-8, and 
caspase-3).

In contrast to our results with cytotoxic potential of Co3O4 

nanoparticles, the particles were observed not to induce 
DNA damage. No significant differences were found in tail 
intensity. The tail intensities observed were 16.90 (±0.74) 
and 3.71 (±0.42) for positive (100 µM H2O2) and negative 
control (1% PBS) groups, respectively (Figure 4). However, 
there are some opposite results in the literature. Alarifi et al. 
[5] indicated that Co3O4 nanoparticles showed a statistically 
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Figure 1: TEM images of Co3O4 nanoparticles in water (a), cell culture medium (b) and the size distributions of 
Co3O4 nanoparticles in water and cell culture medium by TEM analysis (c).

a b

c

Figure 2: Effect of Co3O4-Nanoparticles on cell viability by MTT and NRU assays.

All experiments were done in triplicates and each assay was repeated four times. The results were presented as mean with ±SD.
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Figure 3: Evaluation on the apoptosis- and necrosis-inducing potentials of Co3O4 nanoparticles using AV apoptosis detection 
assay with PI.

All experiments were done in triplicates and each assay was repeated three times. The results are presented as percentage of the total cell 
amount with ±SD.
*p ≤0.05 were selected as the levels of significance by one-way ANOVA Dunnett t-test.

Figure 4: Evaluation of DNA damage potentials of Co3O4 nanoparticles using comet assay.

Experiments were done in triplicates and each was repeated three times. The results are presented as mean tail intensity (%) with ±SD.
N.C and P.C are negative and positive controls, respectively.
*p ≤0.05 were selected as the levels of significance by one-way ANOVA Dunnett t-test.
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significant dose- and time-related increase in DNA damage. 
Also, Co3O4 nanoparticles caused DNA damage (12.0-24.1 
mg/mL) in human leukocytes and chromosomal aberration 
(100 mg/mL) in human lymphocytes through interacting 
with DNA and producing reactive oxygen species (ROS) 
in vitro [21, 35]. Alarifi et al. [5] reported that Co3O4 

nanoparticles caused a significant reduction in GSH 
with a concomitant increase in lipid hydroperoxide, ROS 
generation, superoxide dismutase, and catalase activities 
at 24 and 48 hours. Similarly, Co3O4 nanoparticles induced 
impairment of cellular viability and caused rapid induction 
of ROS with high levels [19, 36].

Finally, there are few in vivo studies about the 
nephrotoxicity profiles of Co3O4 nanoparticles. In rats 
with 5 mg of metallic Co powder or Co sulphide powder 
injected into each pole of the right kidney, necropsies 
were conducted after 12 months, and no tumours were 
observed in the kidneys of treated or control rats [37]. Rats 
injected intraperitoneally with Co at 3 or 6 mg/kg body 
weight exhibited increased levels of oxidatively damaged 

DNA bases in the liver, kidney, and lung at 2 and 10 days 
following injection [38].

In conclusion; we did not notice a correlation between the 
cell death (apoptosis or necrosis) and the genetic damage. 
However, we observed Co3O4 nanoparticles to be significantly 
induced cell death, presumably via the other pathways. 
Co3O4 nanoparticles should raise concern about their safety 
in various applications because the nanoparticles could be 
possessed of toxicological risk on kidney via cell death, DNA 
damage and apoptotic effects. However, the results need to 
be supported with in vivo studies to fully understand the 
mechanism even if the findings are the first results of Co3O4 

nanoparticle neurotoxicity profiles.
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