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ABSTRACT: Two secoiridoid glycosides, lonicejaposide I (1) and secologanin dimethyl acetal (2), six flavonoids, 
isoorientin (3) hesperidin (4), apigenin 7-O-neohesperidoside (5), luteolin 7-O-b-D-glucopyranoside (6), kaempferol 3-
O-(3'',6''-di-(E)-p-coumaroyl)-b-D-glucopyranoside (7), and kaempferol 3-O-(3''-O-acetyl, 6''-O-(E)-p-coumaroyl)-b-D-
glycopyranoside (8), two caffeoylquinic acid derivatives, chlorogenic acid (9) and 3,5-dicaffeoylquinic acid (10) were 
isolated from the EtOAc and H2O subextracts of the crude MeOH extract prepared from the aerial parts of Scabiosa 
atropurpurea. Their structures were identified by extensive 1D and 2D NMR experiments as well as ESI-MS analysis. 
Xanthine oxidase (XO) inhibitory and antioxidant activities of the isolated compounds were evaluated by in vitro tests. 
Compounds, 3, 5, 6, 9 and 10 showed mild-to-moderate inhibitory effects on XO enzyme. The highest antioxidant 
activity was found for compound 10 according to results of DPPH, FRAP and CUPRAC assays. This is the first study 
on the XO inhibitory activities for compounds 1, 2, 5, 7 and 8.  

KEYWORDS: Scabiosa atropurpurea; secoiridoids; flavonoids; caffeoylquinic acid derivatives; xanthine oxidase 
inhibitory activity; antioxidant activity 

1.  INTRODUCTION 

The genus Scabiosa belongs to Caprifoliaceae family (formerly Dipsacaceae) and comprises 
approximately 100 species worldwide, mainly distributed in the Mediterranean region [1,2]. Various species 
belonging to this genus have been utilized in different folk medicines for their potential benefits on human 
health particularly against pulmonary and cutaneous diseases [3]. For instance, Scabiosa succisa is 
recommended for the treatment of diphtheria and respiratory infections including bronchitis, influenza, 
bronchial pneumonia as well as asthma. It is also employed as a remedy for skin disorders such as ulcer and 
certain types of dermatoses like scabies or herpes ringworm [4-6]. The genus Scabiosa is represented by 30 
species in the flora of Türkiye [7]. S. atropurpureaL., a biennial or perennial plant growing wild in Türkiye, is 
known as “Moruyuzotu” [8]. This species is orally consumed to regulate menstrual cycle in Northern Peru 
while it is used to treat measles and furuncles in Catalonia. A herbal tea obtained from the aerial parts of S. 
atropurpurea is indicated as a veterinary diuretic in Iberian Peninsula, whereas an infusion of its flowers is 
applied externally for acne [1,8-10].  Besides, it is preferred as an ornamental plant due to its bluish-lilac 
flowers [11].  

Biological studies on S. atropurpurea extracts showed different pharmacological effects including 
antimicrobial, antioxidant, antihyperglycemic and hepatoprotective [1,10-12]. Previous phytochemical 
investigations on this species revealed the presence of iridoids and phenolic compounds [11-13].  However, 
there is no detailed study on the isolation of its secondary metabolites and their in vitro xanthine oxidase (XO) 
inhibitory and antioxidant activities. 

The excess production of uric acid in the serum leads to hyperuricemia which further increases the risk 
of gout and related metabolic disorders [14,15].  Xanthine oxidase is a critical enzyme in uric acid synthesis 
that catalyses the oxidation of hypoxanthine to xanthine and further, xanthine to uric acid with reactive oxygen 
species (ROS) production [16]. Therefore, the inhibition of XO activity will help reduce the development of 
hyperuricemia and gout by interrupting the transformation of xanthine to uric acid and thereby reducing uric 
acid levels in the bloodstream as well as contributing to antioxidant activity by decreasing ROS generation 
[17,18]. Although allopurinol, a well-known synthetic XO inhibitor, is clinically used for the management of 
hyperuricemia and gout, it may cause some side effects like gastrointestinal distress, renal toxicity or allergic 
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reactions. Hence, it is important to develop a more safer XO inhibitor for the treatment of gout and 
hyperuricemia [19,20]. 

In present study, we aimed to isolate the secondary metabolites from the aerial parts of S. atropurpurea 
L. by using chromatographic techniques. Further, antioxidant and xanthine oxidase inhibitory activities of the 
isolates were evaluated by in vitro methods as some flavonoids were previously reported to inhibit XO enzyme 
significantly [21,22]. 

 

 
 

 
 

 
Figure 1. Chemical structures of compounds 1–10 isolated from S. atropurpurea. 

2. RESULTS  

2.1. Structure elucidation of the isolates 

The air-dried and powdered aerial parts of S. atropurpurea were extracted with MeOH. The crude MeOH 
extract was suspended in H2O and submitted to liquid-liquid extraction with CHCl3 and EtOAc, respectively. 
Then organic solvents were evaporated to dryness to yield CHCl3, EtOAc and remaining H2O subextracts. 
EtOAc and H2O subextracts were subjected to various chromatographic separations to afford ten secondary 
metabolites including two secoiridoid glycosides (1 and 2), six flavonoids (3-8) and two caffeoylquinic acid 
derivatives (9 and 10) (Figure 1). The isolates were identified as lonicejaposide I (1) [23], secologanin dimethyl 
acetal (2) [24], isoorientin (3) [25], hesperidin (4) [26], apigenin 7-O-neohesperidoside (5) [27], luteolin 7-O-b-
D-glucopyranoside (6) [28], kaempferol 3-O-(3'',6''-di-(E)-p-coumaroyl)-b-D-glucopyranoside (7) [29], 
kaempferol 3-O-(3''-O-acetyl, 6''-O-(E)-p-coumaroyl)-b-D-glucopyranoside (8) [30], chlorogenic acid (9) and 
3,5-dicaffeoylquinic acid (10) [31] by comparing their spectroscopic data with literature values. In previous 
studies, compounds 6 and 10 were characterized by LC-MS analyses from the extracts of S. atropurpureawhile 
compounds 5 and 9 were recently detected in this species [10,11,32]. Previous studies on different Scabiosa 
species revealed the presence of apigenin, luteolin and kaempferol derivatives as the main flavonoids which 
is similar with our results [1]. Among the flavonoid glycosides herein reported, compounds 3, 4, 7 and 8 are 
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reported from S. atropurpurea for the first time. Iridoids and secoiridoids are widely distributed in 
Caprifoliaceae family, especially in the genus Scabiosa [33]. The occurenceof secoiridoids were previously 
reported in S. atropurpurea, but compounds 1 and 2 are being reported for the first time from this species [13]. 
Moreover, compounds 1, 2, and 4 are new for the genusScabiosa. Kaempferol 3-O-(3''-O-acetyl, 6''-O-(E)-p-
coumaroyl)-b-D-glucopyranoside (8) is an acetylated kaempferol derivative first isolated from 
Scabiosahymettia. Structurally, it is similar totrans-tiliroside, an another kaempferol derivative with a 6-O-(p-
coumaroyl)-b-D-glucopyranosyl moiety [30]. Its chemical structure was elucidated on the basis of detailed 1D 
and 2D NMR techniques (Figure 2-5) as well as MS analysis. To our knowledge, it is being reported for the 
third time from the genus Scabiosa after S. hymettia and S. stellata. Moreover, it was only shown to possessin 
vitro antimicrobial activity [30,34].  

 
Figure 2. 1H NMR Spectrum (400 MHz, CD3OD) of 8. 

  
Figure 3. 13C NMR Spectrum (100 MHz, CD3OD) of 8. 
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Figure 4. HSQC Spectrum of 8. 

 
Figure 5. HMBC Spectrum of 8. 
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2.2. Antioxidant activity 

Antioxidant effects of compounds (1-10) were assessed in vitro by DPPH, FRAP and CUPRAC methods 
(Table 1).  The results of antioxidant tests were expressed as mg of Trolox equivalents (TE) per gram of isolated 
compounds (mg TE/g isolated compound). Amongst the tested isolates, 3,5-dicaffeoylquinic acid (10) showed 
the highest antioxidant activity in DPPH, FRAP and CUPRAC assays. Lonicejaposide I (1), a secoiridoid 
derivative, displayed the lowest antioxidant activity in FRAP and CUPRAC methods while possessed no 
activity in DPPH test.  

Generally, the number of free phenolic hydroxyl groups on the chemical structures of natural 
compounds are directly proportional with their antioxidant activities [35].A number of researchers have 
reported thatcaffeoylquinic acid derivatives possess a high antioxidanteffects. Indeed, the antioxidant capacity 
of caffeoylquinic acid derivatives depend on thepresence of caffeoyl units in the molecule [36,37]. Thus, 
compound 10 (dicaffeoylquinic acid derivative) exhibited higher antioxidant activity than compound 9 
(monocaffeoylquinic acid derivative). Regarding flavonoids, the glycosylation on their phenolic hydroxyl 
groups diminishes their antioxidant activity. In our study, isoorientin (3) displayed better antioxidant activity 
than hesperidin (4), apigenin 7-O-neohesperidoside (5) and luteolin 7-O-b-D-glucopyranoside (7) whose C-7 
(OH) groups were substituted with sugar units.In contrast to flavonoids, caffeoylquinic acids are not 
glycosylated at their phenolic hydroxyl groups [38]. According to our results, flavonoid glycosides (3-8) 
showed lower antioxidant effect than caffeoylquinic acid derivatives (9 and 10) possibly due to their 
glycosylation at C-3 or C-7 positions. Previous studies demonstrated that iridoids and secoiridoids did not 
exhibit a strong antioxidant activity as similar with our findings. This is probably owing to their non-phenolic 
structures [39,40].  

Table 1. Antioxidant activity results of compounds 1-10in DPPH, FRAP, CUPRAC assays. 

Compound DPPH                 FRAP 
mg TE/g 

CUPRAC 

1 N.A. 24.62 ± 0.44g 34.16 ± 0.81h 
2 
3 
4 
5 
6 
7 
8 
9 

N.A. 
718.94 ± 1.20b 

12.84 ± 1.53c 

N.A. 
10.34 ± 2.87c 

N.A. 
N.A. 
720.39 ± 3.02b 

116.93 ± 2.69d 

896.09 ± 17.34b 
402.51 ± 6.36c 

46.05 ± 1.06fg 

66.99 ± 0.59ef 

123.40 ± 14.99d 

93.04 ± 7.98de 

879.84 ± 3.54b 

25.31 ± 0.95h 

330.28 ± 19.52c 

201.83 ± 0.58d 
78.84 ± 2.28g 

140.69 ± 2.00f 

185.13 ± 0.85de 

165.17 ± 1.03e 

362.39 ± 12.14b 

10 748.20 ± 7.24a 1038.49 ± 27.14a 640.59 ± 7.75a 
DPPH: 2,2-diphenyl-1-picrylhydrazyl; FRAP: Ferric-reducing antioxidant power; CUPRAC: Cupric-reducing antioxidant 
capacity; N.A.: Not active. All experiments were done in thrice and results were expressed as means ± standard deviation 
(SD). The means with different superscript letters in each column (a-h) demonstrate no significant differences (p< 0.05).  

2.3. Xanthine oxidase inhibitory activity 

Xanthine oxidase plays a key role in the formation of uric acid, the end product of purine metabolism. 
This enzyme catalyses the oxidative hydroxylation of hypoxanthine and xanthine to produce uric acid. The 
high concentration of uric acid in serum results in hyperuricemia which is a risk factor for gout [41,42]. 
Therefore, inhibitors of XO decrease serum uric acid levels and are potentially useful for the treatment of gout 
associated with hyperuricemia [43]. In our study, compounds (1-10) isolated from the S. atropurpureawere 
evaluated for their XO inhibitory activities (Table 2).  

Among the tested compounds, isoorientin (3), apigenin 7-O-neohesperidoside (5), luteolin 7-O-b-D-
glucopyranoside (6), chlorogenic acid (9) and 3,5-dicaffeoylquinic acid (10)displayed mild-to-moderate XO 
inhibitory activities, with IC50 values ranging from 9.58 to 48.67 µg/mL.In particular, luteolin 7-O-b-D-
glucopyranoside (6) showed the highest XO inhibitory activity (IC50: 9.58 ± 1.98µg/mL) which is comparable 
to positive control, allopurinol (IC50: 2.13 ± 0.10µg/mL).    

Previously, luteolin 7-O-b-D-glucopyranoside (6) was reported to have mild-to-moderate XO inhibitory 
effect with an IC50 value of 26.55 µM, while allopurinol showed activity with IC50: 0.92 µM[44]. On the other 
hand, Sarawek et al. found out that 6 possessed moderate XO inhibitory activity (IC50: 19.90 µM) which was 
five times less potent than reference drug, allopurinol (IC50: 3.65 µM) [45]. Similar results for luteolin 7-O-b-D-
glucopyranoside (IC50: 9.58 ± 1.98 µg/mL) were observed in our study (allopurinol, IC50: 2.13 ± 0.10 µg/mL). 
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Isoorientin displayed weak XO inhibitory effect (IC50: 117.2 ± 13.5 µM) compared to positive control, quercetin 
(IC50: 7.7 ± 0.3 µM) [46]. An et al. also reported that isoorientin exerted 96% inhibition of XO enzyme at 
concentration of 667 µmol/L which is similar to allopurinol at 80 µmol/L concentration with 97% inhibitory 
ratio [47]. This study also proved that isoorientin showed weak inhibitory activity against XO which seems to 
be compatible with our results. Chlorogenic acid (9) and 3,5-dicaffeoylquinic acid (10) were found to inhibit 
XO enzyme with an IC50 value of 28.29 µM and 43.86 µM, respectively (allopurinol, IC50: 2.49 µM) [48]. 
However, in our study, 10 showed higher XO inhibitory activity than 9. Previous in vitro experiment 
demonstrated that hesperidin (4) exhibited relatively very weak inhibitory effect (IC50: >2000 mg/L) against 
XO which is line with our finding (did not show activity in the tested concentration ranges, 50-400 µg/mL) 
[49]. The lack of the activity of the tested kaempferol derivatives (7 and 8) may be related to their glycosidic 
structures, since their aglycone, kaempferol, was found to significantly inhibit the XO enzyme [50]. Yuan et al. 
also reported that the glycosylation of some flavonoids, such as kaempferol, might cause to decrease in their 
inhibition toward XO enzyme [51]. This is the first study to evaluate XO inhibitory activities of compounds 1, 
2, 5, 7 and 8.  

Table 2. In vitro xanthine oxidase (XO) inhibitory activities of compounds (1-10). 

Compound XO Inhibitory Activity (IC50, µg/mL ± SD) 
1 N.A. 
2 N.A. 
3 48.67 ± 6.46c 
4 N.A. 
5 42.58 ± 3.29c 

6 
7 
8 
9 
10 
Allopurinol 

9.58 ± 1.98a 

N.A. 
N.A. 
27.32 ± 2.40b 

22.38 ± 2.42b 

2.13 ± 0.10 
N.A.: Not active. The IC50 values of each sample were measured in triplicate. Results were stated as means ± SD. The 
means with lowercase letters (a-c) indicate no significant differences (p < 0.05).  

3. CONCLUSION 

Phytochemical studies on the EtOAc and H2O subextracts of S. atropurpurea yielded 10 secondary 
metabolites belonging to secoiridoid glycosides (1 and 2), flavonoids (3-8) and caffeoylquinic acid derivatives 
(9 and 10). Their structures were determined based on the spectroscopic methods. To our best knowledge, 
compounds 1, 2, and 4 are being purified and identified for the first time from the genus Scabiosa. Compounds 
3, 5, 6, 9 and 10 showed mild-to-moderate inhibitory activity on the XO enzyme, compared to the positive 
control. In particular, luteolin 7-O-b-D-glucopyranoside (6) displayed the highest inhibition against XO 
enzymeand 3,5-dicaffeoylquinic acid possessed the highest antioxidant activity among all tested compounds. 

4. MATERIALS AND METHODS 

4.1. General experimental procedures 

Column chromatography (CC) was performed on silica gel 60 (Merck, Darmstadt, Germany), Sephadex 
LH-20 (Sigma-Aldrich, St. Louis, MO, USA) and Polyamide (Fluka Analytical, Sigma-Aldrich, USA). Medium-
Pressure Liquid Chromatography (MPLC) was performed with Sepacore® Flash Systems X10/X50 
(BuchiLabortechnik AG, Flawil, Switzerland) on RediSep columns (LiChroprep C18: 150 and 100 g; SiO2: 12 g, 
Teledyne Isco, Lincoln, Nebraska, USA). Thin Layer Chromatography (TLC) analyses were carried out on 
silica gel 60 F254 plates (Merck, Darmstadt, Germany), visualization was accomplished by spraying with 1% 
vanillin/H2SO4 followed by heating at 105 °C for 2-3 min, and detected with UV lights (254 and 365 nm). 
Analytical grade solvents (CH2Cl2 and MeOH) were used for chromatographic separations. 1D (1H: 400 MHz, 
13C: 100 MHz) and 2D NMR (COSY, HSQC, HMBC and ROESY) spectra were recorded by using a Varian 
Mercury FT spectrometer (Palo Alto, USA) in CD3OD or DMSO-d6. TMS was used as an internal standard. The 
chemical shift values (δ) were expressed in ppm while coupling constants (J) were in Hz. ESI-MS data was 
recorded on Agilent G6530B TOF/Q-YTOF mass spectrometer (Agilent Technologies, USA) in positive ion 
mode. 
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4.2. Plant material  

The aerial parts of Scabiosa atropurpurea L. were collected from Yeditepe University, Kayışdağı campus, 
İstanbul province of Türkiye in July 2021. The plant material was identified by Prof. Dr. Hasan Kırmızıbekmez. 
A voucher specimen (YEF 21005) has been stored in the Herbarium of the Department of Pharmacognosy, 
Facult of Pharmacy, Yeditepe University, İstanbul, Türkiye.  

4.3. Extraction and isolation 

The air-dried and powdered aerial parts of S. atropurpurea (250 g) were extracted two times with MeOH 
(2.5 L) at 45 °C for 2 h to obtain crude MeOH extract (40 g, yield: 16%) after removal of solvent under vacuum. 
An aliquot of MeOH extract (39.5 g) was dispersed in H2O (80 mL) and then partitioned with CHCl3 (3 x 80 
mL) and EtOAc (3 x 80 mL), respectively to yield CHCl3 (9.69 g), EtOAc (1.57 g), and rH2O (25.42 g) subextracts. 
EtOAcsubextract (1.57 g) was applied to C18-MPLC (150 g) with a gradient of H2O-MeOH (0-100 % MeOH) to 
give 16 fractions (Frs. A-P). Fr. N (42 mg) was further separated by silica gel (SiO2) (8 g) CC using CH2Cl2-
MeOH as a solvent system (98:2 → 90:10) to obtain 2 (12 mg). Purification of 7 (10 mg) was accomplished by 
separation of fr. P (37 mg) on SiO2 (6 g) column with CH2Cl2-MeOH mixture (95:5 → 90:10). Fr. O (21 mg) was 
subjected to SiO2 (5 g) CC with CH2Cl2-MeOH as the eluent (96:4 → 90:10) to yield 8 (3 mg). Fr. J (84 mg) was 
chromatographed over SiO2 (15 g) CC by elution of CH2Cl2-MeOH-H2O mixture (95:5:0 → 80:20:2) to give six 
subfractions, frs. J1-J6. Fr. J5 (20 mg) was further purified by Sephadex LH-20 (22 g) CC using MeOH to afford 
6 (6 mg). Fr. Compound 10 (9 mg) was isolated from fr. G (105 mg) by SiO2 (15 g) CC with CH2Cl2-MeOH-H2O 
as the eluting solvent (97:3:0 → 70:30:3). H2O subextract (25.42 g) was fractionated over polyamide column 
(100 g) eluting with stepwise gradient of MeOH in H2O (0-100%, in steps of 20%, each 200 mL) to obtain eight 
fractions (Frs. 1-8). Fr. 2 (5.841 g) was further fractionated on SiO2 (120 g) column using CH2Cl2-MeOH-H2O 
(90:10:1 → 61:32:7) as mobile phase to give eight subfractions, frs. 2a-h. Fr. 2d (565 mg) was implemented to 
Sephadex LH-20 (95 g) CC eluted with MeOH to give four fractions, frs. 2d1-4. Purification of 4 (3 mg) was 
carried out from fr. 2d4 (27 mg) via SiO2-MPLC (12 g) by gradient elution of MeOH in CH2Cl2 (95:5 to 80:20). 
Fr. 2d3 (444 mg) was applied to C18-MPLC (100 g) with a gradient of H2O-MeOH mixture (20 to 60% MeOH) 
and obtained 1 (16 mg). Fr. 6 (556 mg) was subjected to C18-MPLC (150 g) using H2O-MeOH (linear gradient 
10-50%) as the eluting solvent to give 9 (49 mg) and together with seven fractions, frs. 6a-g. Among these 
fractions, fr. 6c (12 mg) was separated over Sephadex LH-20 (6 g) CC eluted with MeOH to yield 3 (6 mg). 
Purification of fr. 6g (39 mg) over SiO2 (8 g) CC using CH2Cl2-MeOH-H2O (95:5:0 → 85:15:1) mixtures afforded 
5 (3 mg). Compound 3 (15 mg) was purified from fr. 6d (103 mg) by SiO2 (15 g) CC eluting with CH2Cl2-MeOH-
H2O (95:5:0 → 80:20:2). Fr. 8 (50 mg) was chromatographed on Sephadex LH-20 (22 g) using MeOH as the 
mobile phase and obtained 9 (14 mg) together with 1 fraction, fr. 8a. Fr. 8a (22 mg) was further loaded in 
column that contains 4 g silica gel eluted with CH2Cl2-MeOH (90:10 → 85:15) to give 6 (12 mg). 

4.4. Antioxidant activity 

4.4.1. Preparation of standard solution for antioxidant assays 

The stock standard solution of Trolox (Sigma-Aldrich, Steinheim, Germany) was prepared in MeOH 
and further diluted to prepare working standard solutions in the range of from 200 µg/mL to 3.125 µg/mL 
before DPPH, FRAP and CUPRAC analyses.  

4.4.2. DPPH method 

DPPH assay was performed according to the method of Degirmencioglu et al. [52] with some 
modifications. 20 µL of working concentrations of Trolox standard solutions, sample test solution or or blank 
(MeOH) were added into a 96-well plate, separately. Thereafter, 280 µL of 0.1 mM methanolic DPPH solution 
(abs. ~0.7, Sigma-Aldrich, Steinheim, Germany) was inserted into each well resulting the final volume of 300 
µL. The plate was incubated at room temperature for 30 min in the dark conditions. Lastly, the absorbance 
was measured at 520 nm using the plate reader Varioskan™ LUX (Thermo Fisher Scientific, USA). Results were 
expressed as mg of Trolox equivalent (TE)/g. 

4.4.3. FRAP method 

Firstly, FRAP solution was freshly prepared by mixing 1 volume of iron (III) chloride solution (2x10-2 
M, Riedel-de Haen, Germany), 1 volume of TPTZ solution (1x10-2 M), and 10 volumes of sodium acetate buffer 
(pH 3.6) solution. Then, 280 µL of FRAP solution and 20 µl of sample test solution or Trolox standard solution 
or blank (water) were added into a 96-well microplate. After 6 minutes, the absorbance was read 
spectrophotometrically at 593 nm [53]. Outcomes of the analysis were stated as mg TE/g.     
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4.4.4. CUPRAC method 

Evaluation of the antioxidant activites of the compounds by the CUPRAC method were carried out 
according to study of Apak et al. [54]. Initially, 85 µL of 10 mM Copper (II) sulfate pentahydrate (Sigma-
Aldrich, Steinheim, Germany) was mixed with 85 µL of 7.5 mM neocuproine, 85 µL ammonium acetate buffer 
solution (pH 7) and 51 µL of distilled water in wells of a 96-well microplate. Then, either 43 µL of sample test 
solution or Trolox standard solution or blank (water) were inserted in each well. After 30 min of kept of the 
plate at room temperature, the absorbance was detected at 450 nm. Findings were expressed as mg TE/g.  

4.5. Xanthine oxidase inhibitory activity 

The inhibitory effect on xanthine oxidase was conducted according to the procedure of Azmi et al. [16] 
with minor changes. 75 µL of 50 mM sodium phosphate buffer (pH 7.5), 25 µL of sample solution dissolved in 
water or DMSO, 25 µL of freshly prepared enzyme solution (0.2 U/mL of XO in buffer solution) and 25 µL of 
distilled water were added into a 96-well microplate, respectively. The reaction mixture was pre-incubated at 
37°C for 15 min and followed by addition of 50 µL substrate solution (0.15 mM xanthine, Alfa Aesar, Haverhill, 
Massachusetts, USA) into the mixture. Then, the mixture was incubated at 37°C for 30 min, and the reaction 
was terminated by adding 50 µL of 0.5 M HCl. Finally, the absorbance was read at 290 nm against a blank, 
containing all reagents except enzyme solution.  Allopurinol (Acros Organics, Geel, Belgium) used as a 
positive control which was prepared at different concentrations in range of from 15 to 200 µg/mL. The 
xanthine oxidase inhibition (%) was calculated by using the following formula:  

XO inhibition (%) = [1-(Sampleabs-Sample blankabs)/(Controlabs-Control blankabs)]x100 

4.6. Statistical analysis  

All experiments were performed in triplicate. Experimental results and statistical significance of the 
results were determined by using Minitab 17 software with one-way analysis of variance (ANOVA). 
Comparison of significance was ascertained by Tukey post hoc-test with 95% confidence. Results were 
expressed as means ± SD and significance levels were defined as p < 0.05.   
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