OP13. IN VITRO BIOLOGICAL ACTIVITIES AND PHYTOCHEMICAL INGREDIENTS OF TWO HEPTAPTERA SPECIES: HEPTAPTERA ANISOPTERA (D.C.) TUTIN AND H. CILICICA (BOISS. & BAL.) TUTIN

Ceylan DÖNMEZ1* D, Fatma AYAZ1D, Yavuz BAĞCI2D, Nuraniye ERUYGUR1D

¹Department of Pharmacognosy, Faculty of Pharmacy, Selçuk University, Selçuklu 42130 Ankara, Türkiye

²Deparment of Pharmaceutic Botanic, Faculty of Pharmacy, Selçuk University, Selçuklu 42130 Ankara, Türkiye

*Corresponding Author. E-mail: ceylan.donmez@selcuk.edu.tr

Heptaptera species (H. anisoptera (D.C.) Tutin and H. cilicica (Boiss. & Bal.) Tutin) are Apiaceae plants which are naturally grown in Türkiye. These species, which have been previously studied morphologically and cholinesterase enzyme inhibitor activity buthave limited biological activity and phytochemical content studies, have been selected this study. It was determined that different enzyme inhibition activities and antioxidant capacities and group of compounds responsible for these activities of different extracts of Heptaptera species. Enzyme inhibition activities (acetylcholinesterase, butyrylcholinesterase, a-glucosidase, a-amylase, and tyrosinase) as well as antioxidant activities were evaluated and compared two plants and theirfour extracts (petroleum ether, dichloromethane, ethyl acetate, ethanol). The antioxidant activities of each extracts were determined by using 2,2-diphenyl-1- picrylhydrazyl (DPPH), 2,2'-azino-di-3-ethylbenzthiazoline sulfonic acid (ABTS) and iron chelating method. And total phenol and flavonoid contents were analyzed by spectrofotometric method. Enzyme inhibitory potential was evaluated with Eliza test. According to the experimental results, ethyl acetate H. anisoptera extract and petroleumether extract of H. cilicica showed significant cholinesterases inhibitor effects. The polar

H. cilicica extracts demonstrated higher *a*-amylase inhibitor activity. The highest tyrosinase inhibitory activity was found in the ethanolic *H. anisoptera* extract with the lowest phenol and flavonoid content. Considering the three antioxidant activity parameters, it was concluded that endemic *H. cilicica* has more antioxidant capacitythan *H. anisoptera*. It has been concluded that there is a need for more studies on theendemic *H. cilicica*, which has many potential activities, especially for the elucidationand protection of the phytochemical content of the plant.

Keywords: *Heptaptera species, H. cilicica*; enzyme inhibition, antioxidant activity, phytochemical content of *Heptaptera*.