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ABSTRACT: The Class III histone deacetylases protein Sirt2 has been implicated in the pathogenesis of several age-
related diseases such as inflammation, cancer, and type II diabetes and is considered an attractive novel therapeutic 
target. High-quality small-molecule inhibitors of Sirt2 are vital as chemical probes for target validation and potential 
starting points for new therapeutics. We applied an iterative virtual screening campaign including structure-based 
pharmacophore generation, ensemble docking, and protein-ligand interaction fingerprint analysis, to identify potential 
Sirt2 inhibitors from commercially available chemical libraries. Several hit molecules were determined to make 
exceptional interactions both with the catalytic (C) pocket and selective extended C pocket (EXC) pocket at the same 
time which indicated that these compounds represent promising lead structures for the development of selective and 
potent Sirt2 inhibitors. 
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 1.  INTRODUCTION 

Sirtuins are NAD+-dependent Class III histone deacetylases (HDAC) that are homologous to the yeast 
silent information regulator 2 (Sir2) gene [1]. Among the human sirtuin isoforms (Sirt1-7), Sirt2 is the only 
sirtuin protein that actively shuttles between the nucleus and cytoplasm but also can be found in the 
mitochondria [2]. Therefore, growing evidence has shown that Sirt2 has multifaceted functions in aging and 
age-related diseases such as Parkinson`s disease, inflammation, cancer, and metabolic syndromes such as type 
II diabetes [3]. Understanding the role of Sirt2 in clinical disorders depends on the availability of chemical 
probes with physicochemical properties, isoform-specific, and drug candidates that can be used in biological 
tests. Until today several Sirt2 modulators have been disclosed in the literature. However, most of these 
compounds lack potency, isotype selectivity, or drug-like pharmacokinetic properties which hampers their 
use in physiological studies of Sirt2 or as a potential drug to combat Sirt2-linked pathologies.  

Recently, two identical indole-derived molecules were found to bind Sirt2 protein, one onto the 
catalytic pocket (C pocket) and the other one onto the selective pocket (extended C pocket; EXC) (Figure 1) [4]. 
These ligands have been found to induce approximately ~6 Å displacement in the hinge region [5]. These 
findings showed that the Sirt2 protein was more flexible in the hinge region than the close homologous 
proteins Sirt1 and Sirt3 isoforms and that it can obtain different conformations depending on the ligand type. 
Thus, these structures provide a good starting point for the structure-based design of novel selective Sirt2 
inhibitors. In this study, we aim to identify novel molecules that could interact with both the C and EXC 
pockets of Sirt2 at the same time and show similar binding interactions seen for the indole-derived inhibitors, 
Ex-243 and CHIC35.  As all the important pharmacophore groups will be collected in one molecule, we 
hypothesize that these new molecules would be more active and selective than the already published 
modulators of Sirt2 in the literature. 

Molecular modeling techniques encompass both theoretical and computational methods to generate, 
represent and manipulate molecular systems ranging from small organic compounds to large biomolecules. 
Computer-aided approaches have been heavily used in the drug design and development field and their 
successful applications have accelerated the discovery of several drugs at a significantly lower cost [6]. 
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Figure 1. Crystal structure of the human isoform Sirt2 (green ribbon) in complex with Ex-243 (C pocket; light 
pink sticks, EXC pocket; orange sticks) and ADPR substrate analog (dark pink sticks) (5D7P.pdb) [4]. Zn+2 
ion is represented as a yellow sphere. 

 
One of the widely used in silico drug design tools is molecular docking which predicts the binding 

mode of a given molecule to its macromolecular target [7]. Most often docking studies are performed on a 
single static target crystal structure or a comparative model keeping the ligand flexible. However, it is known 
that ligand binding induces important conformational changes in proteins and that one experimentally 
derived structure represents only one conformational substate out of a protein’s high dimension and unevenly 
populated conformation space. Although there are successful examples of the correct determination of the 
ligand binding mode, based on a single structure approach, docking accuracy can drop off dramatically using 
structures with no ligand-bound or with those in complex to very different ligands. Moreover, incorporating 
target flexibility has been demonstrated to improve new hit identification, pose prediction, as well as binding 
affinity estimation [8]. To incorporate protein flexibility in docking, different approaches have been 
investigated. One of the widely used methods is called ensemble docking in which an ensemble of target 
conformations coming from either X-ray crystallography or NMR spectroscopy is used for docking 
experiments [9].  

Another computational tool that is extensively used in structure-based drug research is the application 
of the pharmacophore concept [10]. International Union of Pure and Applied Chemistry defines a 
pharmacophore model as ‘an ensemble of steric and electronic features that is necessary to ensure the optimal 
supramolecular interactions with a specific biological target and to trigger (or block) its biological response’ 
[11]. There are two main strategies to construct a pharmacophore model: (1) structure-based pharmacophore 
modeling and (2) ligand-based pharmacophore modeling [12]. Receptor-based or so-called structure-based 
receptor modeling relies on the 3D structure of the target and the identification of important interaction points 
probed from available ligand-protein complexes or mutation studies. On the other hand, ligand-based 
pharmacophore modeling depends on the availability of known active molecules to attain the shared common 
features that are important for biological activity. In order to develop reliable pharmacophore models, 
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validation of these models with a training set (and if available enriching these sets with inactive molecules, 
weak binders, or decoy molecules) is essential. Moreover, a good sampling of the conformational space both 
for the training compounds and the virtual libraries that will be screened is critical.  
 In the present work, a series of computer-aided drug discovery approaches including ensemble 
docking, database filtering, and pharmacophore-based virtual screening was applied to identify potential Sirt2 
selective inhibitors from commercial small molecule libraries. Primarily, we generated several pharmacophore 
models using a combination of different features based on the recently resolved crystal structures of Sirt2-
indole-derived inhibitors. Subsequently, these models were used to filter commercial libraries. Next, we 
carried out ensemble docking experiments on the filtered molecules and top-ranked compounds were post-
processed according to Lipinski`s Rule of Five (Ro5) [13]. Finally, the structural protein-ligand interaction 
fingerprints were used to select the hit molecules that favor the similar interactions seen for Sirt2 inhibitors, 
Ex-243 and CHIC35. 
 

2. RESULTS and DISCUSSION 

2.1 Validation of Molecular Docking Protocol 

Molecular docking is one of the main techniques used to predict the interactions and/or biological 
activity of compounds with the active site of the target protein. Therefore, docking programs generally have 
two applications; (1) to identify key molecular recognition motifs by pose estimation and (2) to estimate 
relative binding free energy to distinguish between active and inactive molecules in virtual scanning [14,15]. 
As already shown in many studies in the literature, the top-scored pose is not always the closest to the 
experimental one [15-18]. A docking solution with an RMSD value of less than 2.0 Å between the heavy atoms 
of the experimental pose and the predicted in silico pose has been widely accepted as a successful docking pose 
[19,20]. However, some studies such as cross-docking or self-docking analysis of large ligands have used 2.5 
Å as a threshold value for their RMSD analysis [21]. In such studies, an average of 70% of the highest-scoring 
poses have been found to have an RMSD of 2.0 Å or less between the native pose and the docking solution 
[20]. 

In this study, the pose estimation power of the XP and SP scoring functions and the ranking accuracy 
of both dockingscore and emodel score of the GLIDE program implemented on the Schrödinger Platform 
(Schrödinger Version 2019: LigPrep, Schrödinger, LLC, New York, NY, 2019) was evaluated [22-24]. For this, 
the indole-inhibitors CHIC35, an analog of Ex-527, (Sirt2–ADPR–CHIC35 complex; 5D7Q.pdb) and Ex-243 
(Sirt2–ADPR–Ex243 complex; 5D7P.pdb) were redocked and the RMSD value between the produced poses 
and the crystal poses was calculated (Table S1-5). Since the hinge loop in the EXC pocket adopts a different 
conformation in the A and B chains of both Sirt2-indole inhibitor complexes, all four crystal structures were 
included in our docking studies. An RMSD value of less than 2.0 Å was accepted as a threshold for an 
`acceptable` docking solution. The ligands were re-docked onto complexes with and without bridging waters 
to determine the docking accuracy. A docking accuracy of 38%, 62%, 77%, and 77% were obtained for the XP-
dockingscore, SP-dockingscore, XP-emodel score, and SP-emodel score, respectively (Figure S1-5). Although 
the XP mode was designed to filter out false positive poses and improve the correlation between good poses 
and good scores, in the present study, it did not show a significant superiority over SP mode in terms of 
docking accuracy. Also, XP mode requires a significant amount of CPU time, and docking a large number of 
molecules is time-consuming with this scoring function. Thus, for ensemble docking of virtual compound 
libraries, instead of twenty poses, for each ligand, we generated ten poses for the post-minimization step and 
then, the pose with the highest SP-emodel score was selected for further analysis. 

1.2.  Structure-based Pharmacophore Model Generation  

In the present work, we aimed to identify compounds that could bind both to the catalytic (C) pocket, 
as well as to the recently identified selective extended C pocket (EXC) of the Sirt2 protein. The idea behind this 
work is to identify hits that target key interactions in both C and EXC pockets at the same time. Thus, we 
aimed to identify ligands that consist of features important for Sirt2 inhibitory activity but at the same time 
bear components responsible for the isoform selectivity. Therefore, we used the two recently solved crystal 
structures of Sirt2 with low µM indole inhibitors, EX-243 and CHIC35, for our structure-based pharmacophore 
modeling campaigns.  

A typical macromolecule-ligand-complex-based pharmacophore modeling starts with determining 
the important interaction points between the ligand and the protein, and their spatial relationships. Next, the 
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selected chemical features are assembled in a structure-based pharmacophore model. Finally, in the presence 
of a set of both active and inactive compounds, pharmacophore models are validated and the one with the 
highest selectivity power is chosen for virtual screening experiments. However, compounds bind at the same 
time both to the C and EXC pockets of Sirt2 and mimic similar interactions as the co-crystallized indole 
inhibitors have not been found in the literature. To overcome this problem, Robaa et al. proposed screening 
large molecule libraries using multiple pharmacophore models instead of a single validated consensus 
pharmacophore model [25]. This method has shown to be successful in cases where active molecules are 
missing, and the pharmacophore model cannot be validated. This method was also adapted in the present 
work.  

First, we used the Pharmacophore Consensus tool implemented in Molecular Operating Environment 
(MOE) software [26] to generate pharmacophore annotation points on both ligands observed in the Sirt2–
ADPR–CHIC35 and Sirt2–ADPR–EX243 crystal complexes in C and EXC pockets (Figure 2). The resulting 
common model shown in Figure 2c is characterized by 22 features automatically created on the aligned 
ligands. The common pharmacophore model includes 6 aromatic features and 6 hydrophobic features 
occupied by the carbazole ring of EX-243, the cyclohepta[b]indole ring of CHIC35, and the chlorine atom. 
Moreover, the pharmacophore query consists of seven hydrogen bond acceptors between the amide carbonyl 
of the ligands and the sidechains of Ile169 and Asp170 residues in the C pocket and the bridging water 
molecule in the EXC pocket. In addition, the model contains three hydrogen bond donors between the NH2 of 
the amide group of ligands and the bridging water molecule and Asp170 residue in the C and pocket and 
Leu138 and Gly141 residues in the EXC pocket.  

Next, based on the protein-ligand interactions observed in the crystal structures (Figure 3-4), we 
generated four different pharmacophore queries (EHT2 a-d, Figure 5) using different combinations of the 
suggested set of features (Figure 2c). 

 
 

 
 

Figure 2. Structure-based pharmacophore model generation. a) Superimposed crystal structures of 
5D7P.pdb A chain (green), 5D7P.pdb B chain (yellow), 5D7Q.pdb A chain (pink), and 5D7Q.pdb B chain 
(orange) is shown as line models and the co-crystallized ligands belonging to each chain are shown as sticks 
with the respective color belonging to the chain. b) Close up view of the co-crystallized ligands Ex-243 (PDB 
ID: OCZ) in 5D7P.pdb A and B chains and CHIC35 (PDB ID: 4I5) in 5D7Q.pdb A and B chains c) 
Pharmacophore annotation points automatically created on ligands using the Pharmacophore Consensus 
tool implemented in MOE. Pink,  turquoise, green, and orange dots and spheres represent H-bond donor, 
H-bond acceptor, hydrophobic, and aromatic chemical functionalities, respectively. 
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Figure 3. 2D interaction diagram of co-crystallized ligands in the catalytic (C) pocket of Sirt2–ADPR–EX243 
(5D7P.pdb) and Sirt2–ADPR–CHIC35 (5D7Q.pdb) complexes 

 

1.3. Virtual Screening of Commercial Databases 

Before performing a pharmacophore-based virtual screening campaign on the selected commercial 
libraries, we pre-filtered them to eliminate the undesirable compounds that appear as frequent hitters in 
several biochemical high throughput experiments by applying (pan-assay interference compounds) PAINS 
substructure filter [27] and to identify only lead-like small molecules by employing (Rapid Elimination of 
Swill) REOS rules [28]. The number of molecules present in the original library, after preparation with the 
LigPrep module in Schrödinger software and upon pre-filtering by PAINS and REOS rules available in the 
Canvas-Schrodinger tool is presented in Table S6. 

Subsequently, the performance of the four pharmacophore queries, EHT2 a-d, was tested on the three 
subsets, BioDesign Library, Elites & Synergy Libraries, and Gold & Platinum Collections of Asinex database 

[29]. The number of molecules retrieved as hits upon pharmacophore-based virtual screening (PBVS) of the 
Asinex database is presented in Table 1. Due to the low selectivity power of the EHT2b and EHT2c 
pharmacophore models, the EHT2a and EHT2d pharmacophore models were selected for PBVS of 
Chembridge [30], ChemDiv [31], and Enamine [32] molecule libraries. Molecules obtained after the PBVS 
search were subjected to three consecutive post-filtering processes.  
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Figure 4. 2D interaction diagram of co-crystallized ligands in the extended C (EXC) pocket of Sirt2–ADPR–
EX243 (5D7P.pdb) and Sirt2–ADPR–CHIC35 (5D7Q.pdb) complexes 

 
Figure 5. 2D interaction diagram of co-crystallized ligands in the extended C (EXC) pocket of Sirt2–ADPR–
EX243 (5D7P.pdb) and Sirt2–ADPR–CHIC35 (5D7Q.pdb) complexes 
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Table 1. Pharmacophore-based virtual screening results for Asinex database subsets 

Pharmacophore 

Model 

Asinex Screening Database Subsets 

BioDesign  Elite & Synergy Gold & Platinium 

EHT2a 531 187 160 

EHT2b 144,857 71,541 88,809 

EHT2c 118,629 5,.625 71,282 

EHT2d 4569 1793 548 

 
Molecular docking, which is widely used in structure-based virtual screening studies, was chosen as 

the first post-filtering method. When we visually examined the crystal complexes Sirt2–ADPR–EX243 
(5D7P.pdb) and Sirt2–ADPR–CHIC35 (5D7Q.pdb), we realized that Phe190 and TYR139 residues adopted 
different conformations in different chains (data not shown). Therefore, we used both A and B chains 
belonging to these two complexes and thus, in total four protein-ligand complexes were used for ensemble 
docking studies of hit molecules coming from PBVS experiments. The docking pose with the highest SP-
emodel score was used for ranking.  

The ligands that ranked in the top 10% of each dataset were subjected to the second filtering step based 
on Lipinski`s Rule of Five [13]. Accordingly, only compounds that passed the following criteria: molecular 
weight (MW) < 500 g/mol, hydrogen bond acceptors (HBA) ≤ 10, hydrogen bond donors (HBD) ≤ 5, and LogP 
≤5 were selected as hits.  

In the final step, the docking poses of the hit molecules were filtered according to the protein-ligand 
interactions observed in the crystal complexes. PLIF application [33] in the MOE program was used for this 
step. Thus, during the third filtration process, only molecules showing H-bond interactions between the 
Leu138, Gly141, Gln167, and Asp170 residues were accepted as hit molecules. In addition, compounds that 
form the conserved H-bond interaction seen between the Sirtuin substrates and the Val233 residue in the C 
pocket were also included as hits in this step [34]. In total 111, 323, 611, and 642 molecules were retrieved from 
PLIF analysis for ChemDiv, Asinex, Enamine, and Chembridge libraries, respectively (Table 2). Next, hit 
molecules were ranked based on their Ligand Efficiency (LE) score obtained by dividing the docking score 
(DS; SP emodel score) by the number of heavy atoms of that ligand. The chemical structures, DS and LE scores, 
and some of the 2D properties of hit molecules ranked in the top ten are presented in Figure 6. It is important 
to note that all the top 10 hits were coming from the screening based on the EHT2d pharmacophore model.  

When we visually analyzed the protein-ligand interactions of the top 10 hits, all the compounds except 
hit 5 make interactions with residues located both in C and EXC pockets. Since we would like to find 
compounds that can bind into these two pockets at the same time, top-hit molecules align well with the aim 
of this study. All the hits except hit 8 make H-bond interactions with Ile169 in the C pocket. Moreover, the 
second most seen interaction was with another residue in pocket C, Asp170. All hit molecules except hits 1 
and 10 were favoring an H-bond interaction with or without a water bridge with the residue Asp170. We have 
also seen additional water bridging H-bond interactions between the residue Ala85 and hits 2, 4, 5, and 6, 
between the residue Ile93 and hits 2, 4, and 9, and between Pro94 and hit 9. Furthermore, residue Asn168 was 
making direct H-bond interactions with hits 2 and 4 and water-bridging H-bond interactions with hit 10. Hit 
10 was also special as it was the only hit that formed an H bond interaction with residue His187. Finally, we 
realized that three hits, 6, 7, and 8, were making H-bond interactions with residue Gln167. H-bond interactions 
seen between the co-crystallized ligands CHIC35 and Ex243 and the EXC pocket residues Leu138 and/or 
Tyr139 could be captured by all the hit molecules except 5 and 9. When we analyzed the hydrophobic 
interactions, pi-pi stacking interactions with residue Phe96 (all the hit molecules except hits 2, 4, and 9) was 
the most favored one. Similarly, hit molecules formed pi-pi interactions with residues Phe119 (hits 5 and 6), 
Tyr139 (hits 1 and 2), Phe143 (hit 10), His187 (hit 10), Phe190 (hit 7), and Phe235 (hit 9). Lastly, exclusive pi-
cation interaction between Phe119 and hit 6, and again Tyr139 and hits 1 and 10 were observed. 

 

 

 

Table 2. Summary of the screening results obtained for different commercial vendors in this study. 
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Pharmacophore 
Model 

Asinex24 ChemBridge25 
PBVS ED  Ro5 PLIF PBVS ED Ro5 PLIF 

EHT2a 878 87 49 31 1458 144 126 72 
EHT2d 6910 688 348 292 9784 976 819 570 
         
 ChemDiv26 Enamine27 

PBVS ED Ro5 PLIF PBVS ED Ro5 PLIF 

EHT2a 1094 106 21 14 365 36 28 17 
EHT2d 3569 354 161 97 11826 1181 1074 594 
         

 

3. CONCLUSION 

The current study aimed to identify novel and selective inhibitors of the Sirt2 isoform using structure-
based drug discovery approaches including pharmacophore-based virtual screening and 3 subsequent post-
filtering methods; molecular docking, 2D chemical properties, and protein-ligand interaction fingerprint 
analysis. Structure-based pharmacophore model was built based on indole-like inhibitors, CHIC35 and Ex-
243, of Sirt2 that were shown to bind both in C and selective EXC pockets. The generated pharmacophore 
model was used for screening different commercial screening libraries consisting of Asinex, ChemBridge, 
ChemDiv, and Enamine virtual screening databases.  A significant number of virtual “hits” have been 
identified from these libraries which were further post-filtered as aforementioned. Hits were further ranked 
based on their ligand efficiency scores before visual analysis. The top 10 hits showed similar key interactions 
seen for the co-crystallized ligands, CHIC35 and Ex-243, with Sirt2. Since the hit molecules make exceptional 
interactions both with C and EXC pockets at the same time, they represent reasonable starting compounds for 
the identification of selective and potent novel lead structures against Sirt2. 
 
4. MATERIALS AND METHODS 

 
4.1. Preparation of Virtual Libraries 

Asinex [29], ChemBridge [30], ChemDiv [31], and Enamine [32] screening libraries were downloaded 
from the companies’ websites. Ligands were prepared using the LigPrep tool. The possible ionization degrees 
of the molecules at pH 7.0 ± 2.0 were produced. Specified chirality was retained and other chiral centers were 
varied with a maximum of 32 possible stereoisomers. Low-energy 3D structures of the compounds were 
obtained using the Optimized Potentials for Liquid Simulations (OPLS) force field OPLS3e. All other 
parameters for ligand preparation were kept as the default. Compounds in databases that may cause false 
positive results during biological activity assays (PAINS, pan assay interference compounds) [27], and that 
carry reactive functional groups (Rapid Elimination of Swill, REOS) [28] were filtered using the Schrödinger-
Canvas module (Table S6). Conformation production was carried out using the OMEGA tool [35] and a 
maximum of 400 different conformers of each molecule was prepared. 

4.2. Preparation of protein-inhibitor complexes 

X-ray structures of Sirt2 protein in complex with cofactor ADPR (adenosine diphosphate ribose) and 
indole-inhibitors CHIC35 (Sirt2–ADPR–CHIC35 complex; 5D7Q.pdb) and Ex-243 (Sirt2–ADPR–EX243 
complex; 5D7P.pdb) were prepared (Figure S1). The .pdb files of the complexes were taken from the Protein 
Data Bank. The complexes were split into single chains and each chain was prepared using Schrodinger's 
Protein Preparation Wizard module. In summary, hydrogen atoms were added, appropriate bond orders were 
assigned, and C and N terminals were capped with N-acetyl and N-methyl amide groups. The orientations of 
the water molecules were sampled, and the H-bond network was optimized using Propka at pH = 7.0. Then, 
to eliminate steric conflicts, energy minimization of the complexes was carried out using the OPLS3e force 
field and a termination criterion of 0.3 Å Root Mean Square Deviation (RMSD) of heavy atoms. 
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Figure 6. The chemical structures predicted scores and some of the 2D properties of the top ten hit molecules. 
Hits are ranked based on their LE score from left to right and top to bottom. 
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Figure 7. 2D interaction diagram of the top 10 hit molecules with the corresponding protein structure 
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Figure 7. (Continued). 

 

All water molecules except the bridging water molecules found in the crystal structure of the Sirt2–ADPR–
CHIC35 complex (A chain: HOH513 and HOH557, B chain: HOH502 and HOH529) and Sirt2–ADPR–EX243 
complex (A chain: HOH545, HOH551, HOH558, and HOH641, B chain: HOH504 and HOH569) were deleted. 

4.3. Molecular Docking  

Blind docking experiments were conducted using the Glide docking tool implemented in Schrödinger. 
Both Standard Precision (SP) and extra precision (XP) scoring functions were used for self-docking analysis. 
While creating the grid files, all combinations were considered by using protein-ligand complexes that contain 
both bridging water molecules and no water molecules. The position of the co-crystallized inhibitor in the 
crystal structures was used to define the binding site. A total of 20 poses were kept for post-minimization and 
a maximum of 10 top-scored poses were saved. The top-scored pose was evaluated for RMSD calculations.  
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4.4. Structure-based Pharmacophore Model Generation 

The development of pharmacophore models was carried out using the Pharmacophore Query Editor 
tool implemented in the MOE program. We first superimposed the chains of the Sirt2–ADPR–CHIC35 
complex (5D7Q.pdb) and Sirt2–ADPR–EX243 complex (5D7P.pdb) using the Protein Align/Superpose 
application in the MOE program. Then, the Pharmacophore Consensus option was used to generate suggested 
features for the pharmacophore queries based on the Extended Hückel Theory (EHT) pharmacophore scheme. 
With this method, a certain energy threshold (determined in kcal/mol) needs to be overcome for an H-bond 
interaction to form. This energy is calculated by a “receptor strength multiplier” and the power of the 
interacting atom pair. “Acc >” defines the minimum strength of the acceptor atom and the projected acceptor 
annotation point to be interacted with, and “Don >” indicates the minimum strength of the donor atom and 
the projected donor annotation point to be interacted with. 

Based on the protein-ligand interactions observed in the crystal complexes, four pharmacophore 
models, EHT2 a-d, were created (Figure 5). The EHT2a pharmacophore query consists of 7 pharmacophoric 
features (F1-7). F1, F4, F6, and F7 were set as mandatory features. Moreover, among F2, F3, and F5 features of 
the query were marked as “at least one of them must be matched to its projected feature”. In addition, for F4, 
F5, F6, and F7 features, we set the strength of the interacting atom to be Acc>0.48, Don>1, Don>0.33, and 
Don>0.5, respectively. In the EHT2b model, there were 8 pharmacophore features in total. F4 and F7 features 
were set as mandatory features to be matched. Besides, at least two of the F1, F2, F3, and F6 pharmacophore 
features were required to be matched, and at least one of the F5 and F8 pharmacophore groups had to be 
matched. Furthermore, for the F4, F6, F7, and F8 features, the strength of the atom to be interacted with was 
set to Acc>0.48, Don>1, Don>0.33, and Don>0.5, respectively. The EHT2c pharmacophore query contains a 
total of 4 pharmacophoric features (F1-4). All features were set as mandatory. In addition, for F1-4 features 
pharmacophore groups, we set the strength of the interacting atom to be Acc>0.48, Acc>1, Don>0.33, and 
Don>0.5, respectively. In the EHT2d model, there were a total of 6 features (F1-6). F4, F5, and F6 
pharmacophoric features were set as mandatory. Moreover, at least two of the F1, F2, and F3 pharmacophore 
groups were required to be matched. Additionally, for features, F4, F5, and F6, we set the strength of the 
interacting atom to be Acc>1, Don>0.5, and Don>0.5, respectively. 
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